| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldsdrgfldext.1 |
⊢ 𝐺 = ( 𝐹 ↾s 𝐴 ) |
| 2 |
|
fldsdrgfldext.2 |
⊢ ( 𝜑 → 𝐹 ∈ Field ) |
| 3 |
|
fldsdrgfldext.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( SubDRing ‘ 𝐹 ) ) |
| 4 |
|
fldsdrgfldext2.b |
⊢ ( 𝜑 → 𝐵 ∈ ( SubDRing ‘ 𝐺 ) ) |
| 5 |
|
fldsdrgfldext2.h |
⊢ 𝐻 = ( 𝐹 ↾s 𝐵 ) |
| 6 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐵 ) = ( 𝐺 ↾s 𝐵 ) |
| 7 |
|
fldsdrgfld |
⊢ ( ( 𝐹 ∈ Field ∧ 𝐴 ∈ ( SubDRing ‘ 𝐹 ) ) → ( 𝐹 ↾s 𝐴 ) ∈ Field ) |
| 8 |
2 3 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾s 𝐴 ) ∈ Field ) |
| 9 |
1 8
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ Field ) |
| 10 |
6 9 4
|
fldsdrgfldext |
⊢ ( 𝜑 → 𝐺 /FldExt ( 𝐺 ↾s 𝐵 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 12 |
11
|
sdrgss |
⊢ ( 𝐵 ∈ ( SubDRing ‘ 𝐺 ) → 𝐵 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 15 |
14
|
sdrgss |
⊢ ( 𝐴 ∈ ( SubDRing ‘ 𝐹 ) → 𝐴 ⊆ ( Base ‘ 𝐹 ) ) |
| 16 |
1 14
|
ressbas2 |
⊢ ( 𝐴 ⊆ ( Base ‘ 𝐹 ) → 𝐴 = ( Base ‘ 𝐺 ) ) |
| 17 |
3 15 16
|
3syl |
⊢ ( 𝜑 → 𝐴 = ( Base ‘ 𝐺 ) ) |
| 18 |
13 17
|
sseqtrrd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 19 |
|
ressabs |
⊢ ( ( 𝐴 ∈ ( SubDRing ‘ 𝐹 ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐹 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝐹 ↾s 𝐵 ) ) |
| 20 |
3 18 19
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝐹 ↾s 𝐵 ) ) |
| 21 |
1
|
oveq1i |
⊢ ( 𝐺 ↾s 𝐵 ) = ( ( 𝐹 ↾s 𝐴 ) ↾s 𝐵 ) |
| 22 |
20 21 5
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐺 ↾s 𝐵 ) = 𝐻 ) |
| 23 |
10 22
|
breqtrd |
⊢ ( 𝜑 → 𝐺 /FldExt 𝐻 ) |