Step |
Hyp |
Ref |
Expression |
1 |
|
fncnvima2 |
|- ( F Fn _V -> ( `' F " _V ) = { y e. _V | ( F ` y ) e. _V } ) |
2 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
3 |
2
|
eleq1d |
|- ( y = x -> ( ( F ` y ) e. _V <-> ( F ` x ) e. _V ) ) |
4 |
3
|
elrab |
|- ( x e. { y e. _V | ( F ` y ) e. _V } <-> ( x e. _V /\ ( F ` x ) e. _V ) ) |
5 |
|
fvexd |
|- ( F Fn _V -> ( F ` x ) e. _V ) |
6 |
5
|
biantrud |
|- ( F Fn _V -> ( x e. _V <-> ( x e. _V /\ ( F ` x ) e. _V ) ) ) |
7 |
4 6
|
bitr4id |
|- ( F Fn _V -> ( x e. { y e. _V | ( F ` y ) e. _V } <-> x e. _V ) ) |
8 |
7
|
eqrdv |
|- ( F Fn _V -> { y e. _V | ( F ` y ) e. _V } = _V ) |
9 |
1 8
|
eqtrd |
|- ( F Fn _V -> ( `' F " _V ) = _V ) |