Step |
Hyp |
Ref |
Expression |
1 |
|
fnopabco.1 |
|- ( x e. A -> B e. C ) |
2 |
|
fnopabco.2 |
|- F = { <. x , y >. | ( x e. A /\ y = B ) } |
3 |
|
fnopabco.3 |
|- G = { <. x , y >. | ( x e. A /\ y = ( H ` B ) ) } |
4 |
|
df-mpt |
|- ( x e. A |-> ( H ` B ) ) = { <. x , y >. | ( x e. A /\ y = ( H ` B ) ) } |
5 |
3 4
|
eqtr4i |
|- G = ( x e. A |-> ( H ` B ) ) |
6 |
1
|
adantl |
|- ( ( H Fn C /\ x e. A ) -> B e. C ) |
7 |
|
df-mpt |
|- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |
8 |
2 7
|
eqtr4i |
|- F = ( x e. A |-> B ) |
9 |
8
|
a1i |
|- ( H Fn C -> F = ( x e. A |-> B ) ) |
10 |
|
dffn5 |
|- ( H Fn C <-> H = ( y e. C |-> ( H ` y ) ) ) |
11 |
10
|
biimpi |
|- ( H Fn C -> H = ( y e. C |-> ( H ` y ) ) ) |
12 |
|
fveq2 |
|- ( y = B -> ( H ` y ) = ( H ` B ) ) |
13 |
6 9 11 12
|
fmptco |
|- ( H Fn C -> ( H o. F ) = ( x e. A |-> ( H ` B ) ) ) |
14 |
5 13
|
eqtr4id |
|- ( H Fn C -> G = ( H o. F ) ) |