Metamath Proof Explorer


Theorem fnopabco

Description: Composition of a function with a function abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses fnopabco.1 x A B C
fnopabco.2 F = x y | x A y = B
fnopabco.3 G = x y | x A y = H B
Assertion fnopabco H Fn C G = H F

Proof

Step Hyp Ref Expression
1 fnopabco.1 x A B C
2 fnopabco.2 F = x y | x A y = B
3 fnopabco.3 G = x y | x A y = H B
4 df-mpt x A H B = x y | x A y = H B
5 3 4 eqtr4i G = x A H B
6 1 adantl H Fn C x A B C
7 df-mpt x A B = x y | x A y = B
8 2 7 eqtr4i F = x A B
9 8 a1i H Fn C F = x A B
10 dffn5 H Fn C H = y C H y
11 10 biimpi H Fn C H = y C H y
12 fveq2 y = B H y = H B
13 6 9 11 12 fmptco H Fn C H F = x A H B
14 5 13 eqtr4id H Fn C G = H F