Metamath Proof Explorer


Theorem opropabco

Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010)

Ref Expression
Hypotheses opropabco.1 xABR
opropabco.2 xACS
opropabco.3 F=xy|xAy=BC
opropabco.4 G=xy|xAy=BMC
Assertion opropabco MFnR×SG=MF

Proof

Step Hyp Ref Expression
1 opropabco.1 xABR
2 opropabco.2 xACS
3 opropabco.3 F=xy|xAy=BC
4 opropabco.4 G=xy|xAy=BMC
5 opelxpi BRCSBCR×S
6 1 2 5 syl2anc xABCR×S
7 df-ov BMC=MBC
8 7 eqeq2i y=BMCy=MBC
9 8 anbi2i xAy=BMCxAy=MBC
10 9 opabbii xy|xAy=BMC=xy|xAy=MBC
11 4 10 eqtri G=xy|xAy=MBC
12 6 3 11 fnopabco MFnR×SG=MF