Step |
Hyp |
Ref |
Expression |
1 |
|
opropabco.1 |
|- ( x e. A -> B e. R ) |
2 |
|
opropabco.2 |
|- ( x e. A -> C e. S ) |
3 |
|
opropabco.3 |
|- F = { <. x , y >. | ( x e. A /\ y = <. B , C >. ) } |
4 |
|
opropabco.4 |
|- G = { <. x , y >. | ( x e. A /\ y = ( B M C ) ) } |
5 |
|
opelxpi |
|- ( ( B e. R /\ C e. S ) -> <. B , C >. e. ( R X. S ) ) |
6 |
1 2 5
|
syl2anc |
|- ( x e. A -> <. B , C >. e. ( R X. S ) ) |
7 |
|
df-ov |
|- ( B M C ) = ( M ` <. B , C >. ) |
8 |
7
|
eqeq2i |
|- ( y = ( B M C ) <-> y = ( M ` <. B , C >. ) ) |
9 |
8
|
anbi2i |
|- ( ( x e. A /\ y = ( B M C ) ) <-> ( x e. A /\ y = ( M ` <. B , C >. ) ) ) |
10 |
9
|
opabbii |
|- { <. x , y >. | ( x e. A /\ y = ( B M C ) ) } = { <. x , y >. | ( x e. A /\ y = ( M ` <. B , C >. ) ) } |
11 |
4 10
|
eqtri |
|- G = { <. x , y >. | ( x e. A /\ y = ( M ` <. B , C >. ) ) } |
12 |
6 3 11
|
fnopabco |
|- ( M Fn ( R X. S ) -> G = ( M o. F ) ) |