Metamath Proof Explorer


Theorem opropabco

Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010)

Ref Expression
Hypotheses opropabco.1
|- ( x e. A -> B e. R )
opropabco.2
|- ( x e. A -> C e. S )
opropabco.3
|- F = { <. x , y >. | ( x e. A /\ y = <. B , C >. ) }
opropabco.4
|- G = { <. x , y >. | ( x e. A /\ y = ( B M C ) ) }
Assertion opropabco
|- ( M Fn ( R X. S ) -> G = ( M o. F ) )

Proof

Step Hyp Ref Expression
1 opropabco.1
 |-  ( x e. A -> B e. R )
2 opropabco.2
 |-  ( x e. A -> C e. S )
3 opropabco.3
 |-  F = { <. x , y >. | ( x e. A /\ y = <. B , C >. ) }
4 opropabco.4
 |-  G = { <. x , y >. | ( x e. A /\ y = ( B M C ) ) }
5 opelxpi
 |-  ( ( B e. R /\ C e. S ) -> <. B , C >. e. ( R X. S ) )
6 1 2 5 syl2anc
 |-  ( x e. A -> <. B , C >. e. ( R X. S ) )
7 df-ov
 |-  ( B M C ) = ( M ` <. B , C >. )
8 7 eqeq2i
 |-  ( y = ( B M C ) <-> y = ( M ` <. B , C >. ) )
9 8 anbi2i
 |-  ( ( x e. A /\ y = ( B M C ) ) <-> ( x e. A /\ y = ( M ` <. B , C >. ) ) )
10 9 opabbii
 |-  { <. x , y >. | ( x e. A /\ y = ( B M C ) ) } = { <. x , y >. | ( x e. A /\ y = ( M ` <. B , C >. ) ) }
11 4 10 eqtri
 |-  G = { <. x , y >. | ( x e. A /\ y = ( M ` <. B , C >. ) ) }
12 6 3 11 fnopabco
 |-  ( M Fn ( R X. S ) -> G = ( M o. F ) )