Metamath Proof Explorer


Theorem opropabco

Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010)

Ref Expression
Hypotheses opropabco.1 ( 𝑥𝐴𝐵𝑅 )
opropabco.2 ( 𝑥𝐴𝐶𝑆 )
opropabco.3 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = ⟨ 𝐵 , 𝐶 ⟩ ) }
opropabco.4 𝐺 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = ( 𝐵 𝑀 𝐶 ) ) }
Assertion opropabco ( 𝑀 Fn ( 𝑅 × 𝑆 ) → 𝐺 = ( 𝑀𝐹 ) )

Proof

Step Hyp Ref Expression
1 opropabco.1 ( 𝑥𝐴𝐵𝑅 )
2 opropabco.2 ( 𝑥𝐴𝐶𝑆 )
3 opropabco.3 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = ⟨ 𝐵 , 𝐶 ⟩ ) }
4 opropabco.4 𝐺 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = ( 𝐵 𝑀 𝐶 ) ) }
5 opelxpi ( ( 𝐵𝑅𝐶𝑆 ) → ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝑅 × 𝑆 ) )
6 1 2 5 syl2anc ( 𝑥𝐴 → ⟨ 𝐵 , 𝐶 ⟩ ∈ ( 𝑅 × 𝑆 ) )
7 df-ov ( 𝐵 𝑀 𝐶 ) = ( 𝑀 ‘ ⟨ 𝐵 , 𝐶 ⟩ )
8 7 eqeq2i ( 𝑦 = ( 𝐵 𝑀 𝐶 ) ↔ 𝑦 = ( 𝑀 ‘ ⟨ 𝐵 , 𝐶 ⟩ ) )
9 8 anbi2i ( ( 𝑥𝐴𝑦 = ( 𝐵 𝑀 𝐶 ) ) ↔ ( 𝑥𝐴𝑦 = ( 𝑀 ‘ ⟨ 𝐵 , 𝐶 ⟩ ) ) )
10 9 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = ( 𝐵 𝑀 𝐶 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = ( 𝑀 ‘ ⟨ 𝐵 , 𝐶 ⟩ ) ) }
11 4 10 eqtri 𝐺 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = ( 𝑀 ‘ ⟨ 𝐵 , 𝐶 ⟩ ) ) }
12 6 3 11 fnopabco ( 𝑀 Fn ( 𝑅 × 𝑆 ) → 𝐺 = ( 𝑀𝐹 ) )