Step |
Hyp |
Ref |
Expression |
1 |
|
fnopabco.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶 ) |
2 |
|
fnopabco.2 |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
3 |
|
fnopabco.3 |
⊢ 𝐺 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐻 ‘ 𝐵 ) ) } |
4 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝐵 ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐻 ‘ 𝐵 ) ) } |
5 |
3 4
|
eqtr4i |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝐵 ) ) |
6 |
1
|
adantl |
⊢ ( ( 𝐻 Fn 𝐶 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
7 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
8 |
2 7
|
eqtr4i |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
9 |
8
|
a1i |
⊢ ( 𝐻 Fn 𝐶 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
10 |
|
dffn5 |
⊢ ( 𝐻 Fn 𝐶 ↔ 𝐻 = ( 𝑦 ∈ 𝐶 ↦ ( 𝐻 ‘ 𝑦 ) ) ) |
11 |
10
|
biimpi |
⊢ ( 𝐻 Fn 𝐶 → 𝐻 = ( 𝑦 ∈ 𝐶 ↦ ( 𝐻 ‘ 𝑦 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝐵 ) ) |
13 |
6 9 11 12
|
fmptco |
⊢ ( 𝐻 Fn 𝐶 → ( 𝐻 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝐵 ) ) ) |
14 |
5 13
|
eqtr4id |
⊢ ( 𝐻 Fn 𝐶 → 𝐺 = ( 𝐻 ∘ 𝐹 ) ) |