| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvres |
|- ( x e. ( _V X. _V ) -> ( ( 2nd |` ( _V X. _V ) ) ` x ) = ( 2nd ` x ) ) |
| 2 |
1
|
eqeq1d |
|- ( x e. ( _V X. _V ) -> ( ( ( 2nd |` ( _V X. _V ) ) ` x ) = y <-> ( 2nd ` x ) = y ) ) |
| 3 |
|
vex |
|- y e. _V |
| 4 |
3
|
elsn2 |
|- ( ( 2nd ` x ) e. { y } <-> ( 2nd ` x ) = y ) |
| 5 |
|
fvex |
|- ( 1st ` x ) e. _V |
| 6 |
5
|
biantrur |
|- ( ( 2nd ` x ) e. { y } <-> ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) |
| 7 |
4 6
|
bitr3i |
|- ( ( 2nd ` x ) = y <-> ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) |
| 8 |
2 7
|
bitrdi |
|- ( x e. ( _V X. _V ) -> ( ( ( 2nd |` ( _V X. _V ) ) ` x ) = y <-> ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) ) |
| 9 |
8
|
pm5.32i |
|- ( ( x e. ( _V X. _V ) /\ ( ( 2nd |` ( _V X. _V ) ) ` x ) = y ) <-> ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) ) |
| 10 |
|
f2ndres |
|- ( 2nd |` ( _V X. _V ) ) : ( _V X. _V ) --> _V |
| 11 |
|
ffn |
|- ( ( 2nd |` ( _V X. _V ) ) : ( _V X. _V ) --> _V -> ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) ) |
| 12 |
|
fniniseg |
|- ( ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) -> ( x e. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) <-> ( x e. ( _V X. _V ) /\ ( ( 2nd |` ( _V X. _V ) ) ` x ) = y ) ) ) |
| 13 |
10 11 12
|
mp2b |
|- ( x e. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) <-> ( x e. ( _V X. _V ) /\ ( ( 2nd |` ( _V X. _V ) ) ` x ) = y ) ) |
| 14 |
|
elxp7 |
|- ( x e. ( _V X. { y } ) <-> ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) ) |
| 15 |
9 13 14
|
3bitr4i |
|- ( x e. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) <-> x e. ( _V X. { y } ) ) |
| 16 |
15
|
eqriv |
|- ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) = ( _V X. { y } ) |