| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvres |  |-  ( x e. ( _V X. _V ) -> ( ( 2nd |` ( _V X. _V ) ) ` x ) = ( 2nd ` x ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( x e. ( _V X. _V ) -> ( ( ( 2nd |` ( _V X. _V ) ) ` x ) = y <-> ( 2nd ` x ) = y ) ) | 
						
							| 3 |  | vex |  |-  y e. _V | 
						
							| 4 | 3 | elsn2 |  |-  ( ( 2nd ` x ) e. { y } <-> ( 2nd ` x ) = y ) | 
						
							| 5 |  | fvex |  |-  ( 1st ` x ) e. _V | 
						
							| 6 | 5 | biantrur |  |-  ( ( 2nd ` x ) e. { y } <-> ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) | 
						
							| 7 | 4 6 | bitr3i |  |-  ( ( 2nd ` x ) = y <-> ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) | 
						
							| 8 | 2 7 | bitrdi |  |-  ( x e. ( _V X. _V ) -> ( ( ( 2nd |` ( _V X. _V ) ) ` x ) = y <-> ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) ) | 
						
							| 9 | 8 | pm5.32i |  |-  ( ( x e. ( _V X. _V ) /\ ( ( 2nd |` ( _V X. _V ) ) ` x ) = y ) <-> ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) ) | 
						
							| 10 |  | f2ndres |  |-  ( 2nd |` ( _V X. _V ) ) : ( _V X. _V ) --> _V | 
						
							| 11 |  | ffn |  |-  ( ( 2nd |` ( _V X. _V ) ) : ( _V X. _V ) --> _V -> ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) ) | 
						
							| 12 |  | fniniseg |  |-  ( ( 2nd |` ( _V X. _V ) ) Fn ( _V X. _V ) -> ( x e. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) <-> ( x e. ( _V X. _V ) /\ ( ( 2nd |` ( _V X. _V ) ) ` x ) = y ) ) ) | 
						
							| 13 | 10 11 12 | mp2b |  |-  ( x e. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) <-> ( x e. ( _V X. _V ) /\ ( ( 2nd |` ( _V X. _V ) ) ` x ) = y ) ) | 
						
							| 14 |  | elxp7 |  |-  ( x e. ( _V X. { y } ) <-> ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. _V /\ ( 2nd ` x ) e. { y } ) ) ) | 
						
							| 15 | 9 13 14 | 3bitr4i |  |-  ( x e. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) <-> x e. ( _V X. { y } ) ) | 
						
							| 16 | 15 | eqriv |  |-  ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) = ( _V X. { y } ) |