Metamath Proof Explorer


Theorem fparlem2

Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fparlem2 2ndV×V-1y=V×y

Proof

Step Hyp Ref Expression
1 fvres xV×V2ndV×Vx=2ndx
2 1 eqeq1d xV×V2ndV×Vx=y2ndx=y
3 vex yV
4 3 elsn2 2ndxy2ndx=y
5 fvex 1stxV
6 5 biantrur 2ndxy1stxV2ndxy
7 4 6 bitr3i 2ndx=y1stxV2ndxy
8 2 7 bitrdi xV×V2ndV×Vx=y1stxV2ndxy
9 8 pm5.32i xV×V2ndV×Vx=yxV×V1stxV2ndxy
10 f2ndres 2ndV×V:V×VV
11 ffn 2ndV×V:V×VV2ndV×VFnV×V
12 fniniseg 2ndV×VFnV×Vx2ndV×V-1yxV×V2ndV×Vx=y
13 10 11 12 mp2b x2ndV×V-1yxV×V2ndV×Vx=y
14 elxp7 xV×yxV×V1stxV2ndxy
15 9 13 14 3bitr4i x2ndV×V-1yxV×y
16 15 eqriv 2ndV×V-1y=V×y