Metamath Proof Explorer


Theorem fparlem3

Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fparlem3 FFnA1stV×V-1F1stV×V=xAx×V×Fx×V

Proof

Step Hyp Ref Expression
1 coiun 1stV×V-1xA1stV×V-1x×Fx=xA1stV×V-11stV×V-1x×Fx
2 inss1 domFran1stV×VdomF
3 fndm FFnAdomF=A
4 2 3 sseqtrid FFnAdomFran1stV×VA
5 dfco2a domFran1stV×VAF1stV×V=xA1stV×V-1x×Fx
6 4 5 syl FFnAF1stV×V=xA1stV×V-1x×Fx
7 6 coeq2d FFnA1stV×V-1F1stV×V=1stV×V-1xA1stV×V-1x×Fx
8 inss1 domFx×x×Vran1stV×VdomFx×x×V
9 dmxpss domFx×x×VFx
10 8 9 sstri domFx×x×Vran1stV×VFx
11 dfco2a domFx×x×Vran1stV×VFxFx×x×V1stV×V=yFx1stV×V-1y×Fx×x×Vy
12 10 11 ax-mp Fx×x×V1stV×V=yFx1stV×V-1y×Fx×x×Vy
13 fvex FxV
14 fparlem1 1stV×V-1y=y×V
15 sneq y=Fxy=Fx
16 15 xpeq1d y=Fxy×V=Fx×V
17 14 16 eqtrid y=Fx1stV×V-1y=Fx×V
18 15 imaeq2d y=FxFx×x×Vy=Fx×x×VFx
19 df-ima Fx×x×VFx=ranFx×x×VFx
20 ssid FxFx
21 xpssres FxFxFx×x×VFx=Fx×x×V
22 20 21 ax-mp Fx×x×VFx=Fx×x×V
23 22 rneqi ranFx×x×VFx=ranFx×x×V
24 13 snnz Fx
25 rnxp FxranFx×x×V=x×V
26 24 25 ax-mp ranFx×x×V=x×V
27 23 26 eqtri ranFx×x×VFx=x×V
28 19 27 eqtri Fx×x×VFx=x×V
29 18 28 eqtrdi y=FxFx×x×Vy=x×V
30 17 29 xpeq12d y=Fx1stV×V-1y×Fx×x×Vy=Fx×V×x×V
31 13 30 iunxsn yFx1stV×V-1y×Fx×x×Vy=Fx×V×x×V
32 12 31 eqtri Fx×x×V1stV×V=Fx×V×x×V
33 32 cnveqi Fx×x×V1stV×V-1=Fx×V×x×V-1
34 cnvco Fx×x×V1stV×V-1=1stV×V-1Fx×x×V-1
35 cnvxp Fx×V×x×V-1=x×V×Fx×V
36 33 34 35 3eqtr3i 1stV×V-1Fx×x×V-1=x×V×Fx×V
37 fparlem1 1stV×V-1x=x×V
38 37 xpeq2i Fx×1stV×V-1x=Fx×x×V
39 fnsnfv FFnAxAFx=Fx
40 39 xpeq1d FFnAxAFx×1stV×V-1x=Fx×1stV×V-1x
41 38 40 eqtr3id FFnAxAFx×x×V=Fx×1stV×V-1x
42 41 cnveqd FFnAxAFx×x×V-1=Fx×1stV×V-1x-1
43 cnvxp Fx×1stV×V-1x-1=1stV×V-1x×Fx
44 42 43 eqtrdi FFnAxAFx×x×V-1=1stV×V-1x×Fx
45 44 coeq2d FFnAxA1stV×V-1Fx×x×V-1=1stV×V-11stV×V-1x×Fx
46 36 45 eqtr3id FFnAxAx×V×Fx×V=1stV×V-11stV×V-1x×Fx
47 46 iuneq2dv FFnAxAx×V×Fx×V=xA1stV×V-11stV×V-1x×Fx
48 1 7 47 3eqtr4a FFnA1stV×V-1F1stV×V=xAx×V×Fx×V