Metamath Proof Explorer


Theorem fparlem3

Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fparlem3 ( 𝐹 Fn 𝐴 → ( ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) = 𝑥𝐴 ( ( { 𝑥 } × V ) × ( { ( 𝐹𝑥 ) } × V ) ) )

Proof

Step Hyp Ref Expression
1 coiun ( ( 1st ↾ ( V × V ) ) ∘ 𝑥𝐴 ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) ) ) = 𝑥𝐴 ( ( 1st ↾ ( V × V ) ) ∘ ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) ) )
2 inss1 ( dom 𝐹 ∩ ran ( 1st ↾ ( V × V ) ) ) ⊆ dom 𝐹
3 fndm ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 )
4 2 3 sseqtrid ( 𝐹 Fn 𝐴 → ( dom 𝐹 ∩ ran ( 1st ↾ ( V × V ) ) ) ⊆ 𝐴 )
5 dfco2a ( ( dom 𝐹 ∩ ran ( 1st ↾ ( V × V ) ) ) ⊆ 𝐴 → ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) = 𝑥𝐴 ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) ) )
6 4 5 syl ( 𝐹 Fn 𝐴 → ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) = 𝑥𝐴 ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) ) )
7 6 coeq2d ( 𝐹 Fn 𝐴 → ( ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) = ( ( 1st ↾ ( V × V ) ) ∘ 𝑥𝐴 ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) ) ) )
8 inss1 ( dom ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ∩ ran ( 1st ↾ ( V × V ) ) ) ⊆ dom ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) )
9 dmxpss dom ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ⊆ { ( 𝐹𝑥 ) }
10 8 9 sstri ( dom ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ∩ ran ( 1st ↾ ( V × V ) ) ) ⊆ { ( 𝐹𝑥 ) }
11 dfco2a ( ( dom ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ∩ ran ( 1st ↾ ( V × V ) ) ) ⊆ { ( 𝐹𝑥 ) } → ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ∘ ( 1st ↾ ( V × V ) ) ) = 𝑦 ∈ { ( 𝐹𝑥 ) } ( ( ( 1st ↾ ( V × V ) ) “ { 𝑦 } ) × ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) “ { 𝑦 } ) ) )
12 10 11 ax-mp ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ∘ ( 1st ↾ ( V × V ) ) ) = 𝑦 ∈ { ( 𝐹𝑥 ) } ( ( ( 1st ↾ ( V × V ) ) “ { 𝑦 } ) × ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) “ { 𝑦 } ) )
13 fvex ( 𝐹𝑥 ) ∈ V
14 fparlem1 ( ( 1st ↾ ( V × V ) ) “ { 𝑦 } ) = ( { 𝑦 } × V )
15 sneq ( 𝑦 = ( 𝐹𝑥 ) → { 𝑦 } = { ( 𝐹𝑥 ) } )
16 15 xpeq1d ( 𝑦 = ( 𝐹𝑥 ) → ( { 𝑦 } × V ) = ( { ( 𝐹𝑥 ) } × V ) )
17 14 16 syl5eq ( 𝑦 = ( 𝐹𝑥 ) → ( ( 1st ↾ ( V × V ) ) “ { 𝑦 } ) = ( { ( 𝐹𝑥 ) } × V ) )
18 15 imaeq2d ( 𝑦 = ( 𝐹𝑥 ) → ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) “ { 𝑦 } ) = ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) “ { ( 𝐹𝑥 ) } ) )
19 df-ima ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) “ { ( 𝐹𝑥 ) } ) = ran ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ↾ { ( 𝐹𝑥 ) } )
20 ssid { ( 𝐹𝑥 ) } ⊆ { ( 𝐹𝑥 ) }
21 xpssres ( { ( 𝐹𝑥 ) } ⊆ { ( 𝐹𝑥 ) } → ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ↾ { ( 𝐹𝑥 ) } ) = ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) )
22 20 21 ax-mp ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ↾ { ( 𝐹𝑥 ) } ) = ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) )
23 22 rneqi ran ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ↾ { ( 𝐹𝑥 ) } ) = ran ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) )
24 13 snnz { ( 𝐹𝑥 ) } ≠ ∅
25 rnxp ( { ( 𝐹𝑥 ) } ≠ ∅ → ran ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) = ( { 𝑥 } × V ) )
26 24 25 ax-mp ran ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) = ( { 𝑥 } × V )
27 23 26 eqtri ran ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ↾ { ( 𝐹𝑥 ) } ) = ( { 𝑥 } × V )
28 19 27 eqtri ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) “ { ( 𝐹𝑥 ) } ) = ( { 𝑥 } × V )
29 18 28 syl6eq ( 𝑦 = ( 𝐹𝑥 ) → ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) “ { 𝑦 } ) = ( { 𝑥 } × V ) )
30 17 29 xpeq12d ( 𝑦 = ( 𝐹𝑥 ) → ( ( ( 1st ↾ ( V × V ) ) “ { 𝑦 } ) × ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) “ { 𝑦 } ) ) = ( ( { ( 𝐹𝑥 ) } × V ) × ( { 𝑥 } × V ) ) )
31 13 30 iunxsn 𝑦 ∈ { ( 𝐹𝑥 ) } ( ( ( 1st ↾ ( V × V ) ) “ { 𝑦 } ) × ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) “ { 𝑦 } ) ) = ( ( { ( 𝐹𝑥 ) } × V ) × ( { 𝑥 } × V ) )
32 12 31 eqtri ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ∘ ( 1st ↾ ( V × V ) ) ) = ( ( { ( 𝐹𝑥 ) } × V ) × ( { 𝑥 } × V ) )
33 32 cnveqi ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ∘ ( 1st ↾ ( V × V ) ) ) = ( ( { ( 𝐹𝑥 ) } × V ) × ( { 𝑥 } × V ) )
34 cnvco ( ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ∘ ( 1st ↾ ( V × V ) ) ) = ( ( 1st ↾ ( V × V ) ) ∘ ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) )
35 cnvxp ( ( { ( 𝐹𝑥 ) } × V ) × ( { 𝑥 } × V ) ) = ( ( { 𝑥 } × V ) × ( { ( 𝐹𝑥 ) } × V ) )
36 33 34 35 3eqtr3i ( ( 1st ↾ ( V × V ) ) ∘ ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ) = ( ( { 𝑥 } × V ) × ( { ( 𝐹𝑥 ) } × V ) )
37 fparlem1 ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) = ( { 𝑥 } × V )
38 37 xpeq2i ( { ( 𝐹𝑥 ) } × ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) ) = ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) )
39 fnsnfv ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → { ( 𝐹𝑥 ) } = ( 𝐹 “ { 𝑥 } ) )
40 39 xpeq1d ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( { ( 𝐹𝑥 ) } × ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) ) = ( ( 𝐹 “ { 𝑥 } ) × ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) ) )
41 38 40 syl5eqr ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) = ( ( 𝐹 “ { 𝑥 } ) × ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) ) )
42 41 cnveqd ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) = ( ( 𝐹 “ { 𝑥 } ) × ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) ) )
43 cnvxp ( ( 𝐹 “ { 𝑥 } ) × ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) ) = ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) )
44 42 43 syl6eq ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) = ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) ) )
45 44 coeq2d ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( ( 1st ↾ ( V × V ) ) ∘ ( { ( 𝐹𝑥 ) } × ( { 𝑥 } × V ) ) ) = ( ( 1st ↾ ( V × V ) ) ∘ ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) ) ) )
46 36 45 syl5eqr ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( ( { 𝑥 } × V ) × ( { ( 𝐹𝑥 ) } × V ) ) = ( ( 1st ↾ ( V × V ) ) ∘ ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) ) ) )
47 46 iuneq2dv ( 𝐹 Fn 𝐴 𝑥𝐴 ( ( { 𝑥 } × V ) × ( { ( 𝐹𝑥 ) } × V ) ) = 𝑥𝐴 ( ( 1st ↾ ( V × V ) ) ∘ ( ( ( 1st ↾ ( V × V ) ) “ { 𝑥 } ) × ( 𝐹 “ { 𝑥 } ) ) ) )
48 1 7 47 3eqtr4a ( 𝐹 Fn 𝐴 → ( ( 1st ↾ ( V × V ) ) ∘ ( 𝐹 ∘ ( 1st ↾ ( V × V ) ) ) ) = 𝑥𝐴 ( ( { 𝑥 } × V ) × ( { ( 𝐹𝑥 ) } × V ) ) )