Metamath Proof Explorer


Theorem fparlem1

Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fparlem1 1stV×V-1x=x×V

Proof

Step Hyp Ref Expression
1 fvres yV×V1stV×Vy=1sty
2 1 eqeq1d yV×V1stV×Vy=x1sty=x
3 vex xV
4 3 elsn2 1styx1sty=x
5 fvex 2ndyV
6 5 biantru 1styx1styx2ndyV
7 4 6 bitr3i 1sty=x1styx2ndyV
8 2 7 bitrdi yV×V1stV×Vy=x1styx2ndyV
9 8 pm5.32i yV×V1stV×Vy=xyV×V1styx2ndyV
10 f1stres 1stV×V:V×VV
11 ffn 1stV×V:V×VV1stV×VFnV×V
12 fniniseg 1stV×VFnV×Vy1stV×V-1xyV×V1stV×Vy=x
13 10 11 12 mp2b y1stV×V-1xyV×V1stV×Vy=x
14 elxp7 yx×VyV×V1styx2ndyV
15 9 13 14 3bitr4i y1stV×V-1xyx×V
16 15 eqriv 1stV×V-1x=x×V