Metamath Proof Explorer


Theorem dfco2a

Description: Generalization of dfco2 , where C can have any value between dom A i^i ran B and _V . (Contributed by NM, 21-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dfco2a domAranBCAB=xCB-1x×Ax

Proof

Step Hyp Ref Expression
1 dfco2 AB=xVB-1x×Ax
2 vex zV
3 2 eliniseg xVzB-1xzBx
4 3 elv zB-1xzBx
5 vex xV
6 2 5 brelrn zBxxranB
7 4 6 sylbi zB-1xxranB
8 vex wV
9 5 8 elimasn wAxxwA
10 5 8 opeldm xwAxdomA
11 9 10 sylbi wAxxdomA
12 7 11 anim12ci zB-1xwAxxdomAxranB
13 12 adantl y=zwzB-1xwAxxdomAxranB
14 13 exlimivv zwy=zwzB-1xwAxxdomAxranB
15 elxp yB-1x×Axzwy=zwzB-1xwAx
16 elin xdomAranBxdomAxranB
17 14 15 16 3imtr4i yB-1x×AxxdomAranB
18 ssel domAranBCxdomAranBxC
19 17 18 syl5 domAranBCyB-1x×AxxC
20 19 pm4.71rd domAranBCyB-1x×AxxCyB-1x×Ax
21 20 exbidv domAranBCxyB-1x×AxxxCyB-1x×Ax
22 rexv xVyB-1x×AxxyB-1x×Ax
23 df-rex xCyB-1x×AxxxCyB-1x×Ax
24 21 22 23 3bitr4g domAranBCxVyB-1x×AxxCyB-1x×Ax
25 eliun yxVB-1x×AxxVyB-1x×Ax
26 eliun yxCB-1x×AxxCyB-1x×Ax
27 24 25 26 3bitr4g domAranBCyxVB-1x×AxyxCB-1x×Ax
28 27 eqrdv domAranBCxVB-1x×Ax=xCB-1x×Ax
29 1 28 eqtrid domAranBCAB=xCB-1x×Ax