Metamath Proof Explorer


Theorem dfco2a

Description: Generalization of dfco2 , where C can have any value between dom A i^i ran B and _V . (Contributed by NM, 21-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dfco2a dom A ran B C A B = x C B -1 x × A x

Proof

Step Hyp Ref Expression
1 dfco2 A B = x V B -1 x × A x
2 vex z V
3 2 eliniseg x V z B -1 x z B x
4 3 elv z B -1 x z B x
5 vex x V
6 2 5 brelrn z B x x ran B
7 4 6 sylbi z B -1 x x ran B
8 vex w V
9 5 8 elimasn w A x x w A
10 5 8 opeldm x w A x dom A
11 9 10 sylbi w A x x dom A
12 7 11 anim12ci z B -1 x w A x x dom A x ran B
13 12 adantl y = z w z B -1 x w A x x dom A x ran B
14 13 exlimivv z w y = z w z B -1 x w A x x dom A x ran B
15 elxp y B -1 x × A x z w y = z w z B -1 x w A x
16 elin x dom A ran B x dom A x ran B
17 14 15 16 3imtr4i y B -1 x × A x x dom A ran B
18 ssel dom A ran B C x dom A ran B x C
19 17 18 syl5 dom A ran B C y B -1 x × A x x C
20 19 pm4.71rd dom A ran B C y B -1 x × A x x C y B -1 x × A x
21 20 exbidv dom A ran B C x y B -1 x × A x x x C y B -1 x × A x
22 rexv x V y B -1 x × A x x y B -1 x × A x
23 df-rex x C y B -1 x × A x x x C y B -1 x × A x
24 21 22 23 3bitr4g dom A ran B C x V y B -1 x × A x x C y B -1 x × A x
25 eliun y x V B -1 x × A x x V y B -1 x × A x
26 eliun y x C B -1 x × A x x C y B -1 x × A x
27 24 25 26 3bitr4g dom A ran B C y x V B -1 x × A x y x C B -1 x × A x
28 27 eqrdv dom A ran B C x V B -1 x × A x = x C B -1 x × A x
29 1 28 eqtrid dom A ran B C A B = x C B -1 x × A x