Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
2 |
|
simpll |
|- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> x C_ A ) |
3 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
4 |
2 3
|
sylibr |
|- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> x e. ~P A ) |
5 |
|
simplr |
|- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> r C_ ( x X. x ) ) |
6 |
|
xpss12 |
|- ( ( x C_ A /\ x C_ A ) -> ( x X. x ) C_ ( A X. A ) ) |
7 |
2 2 6
|
syl2anc |
|- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> ( x X. x ) C_ ( A X. A ) ) |
8 |
5 7
|
sstrd |
|- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> r C_ ( A X. A ) ) |
9 |
|
velpw |
|- ( r e. ~P ( A X. A ) <-> r C_ ( A X. A ) ) |
10 |
8 9
|
sylibr |
|- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> r e. ~P ( A X. A ) ) |
11 |
4 10
|
jca |
|- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) -> ( x e. ~P A /\ r e. ~P ( A X. A ) ) ) |
12 |
11
|
ssopab2i |
|- { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } C_ { <. x , r >. | ( x e. ~P A /\ r e. ~P ( A X. A ) ) } |
13 |
|
df-xp |
|- ( ~P A X. ~P ( A X. A ) ) = { <. x , r >. | ( x e. ~P A /\ r e. ~P ( A X. A ) ) } |
14 |
12 1 13
|
3sstr4i |
|- W C_ ( ~P A X. ~P ( A X. A ) ) |