| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
| 2 |
|
ftc1.a |
|- ( ph -> A e. RR ) |
| 3 |
|
ftc1.b |
|- ( ph -> B e. RR ) |
| 4 |
|
ftc1.le |
|- ( ph -> A <_ B ) |
| 5 |
|
ftc1.s |
|- ( ph -> ( A (,) B ) C_ D ) |
| 6 |
|
ftc1.d |
|- ( ph -> D C_ RR ) |
| 7 |
|
ftc1.i |
|- ( ph -> F e. L^1 ) |
| 8 |
|
ftc1a.f |
|- ( ph -> F : D --> CC ) |
| 9 |
|
fvexd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. ( A (,) x ) ) -> ( F ` t ) e. _V ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 11 |
10
|
rexrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
| 12 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 13 |
2 3 12
|
syl2anc |
|- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 14 |
13
|
biimpa |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 15 |
14
|
simp3d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 16 |
|
iooss2 |
|- ( ( B e. RR* /\ x <_ B ) -> ( A (,) x ) C_ ( A (,) B ) ) |
| 17 |
11 15 16
|
syl2anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) C_ ( A (,) B ) ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) B ) C_ D ) |
| 19 |
17 18
|
sstrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) C_ D ) |
| 20 |
|
ioombl |
|- ( A (,) x ) e. dom vol |
| 21 |
20
|
a1i |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A (,) x ) e. dom vol ) |
| 22 |
|
fvexd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ t e. D ) -> ( F ` t ) e. _V ) |
| 23 |
8
|
feqmptd |
|- ( ph -> F = ( t e. D |-> ( F ` t ) ) ) |
| 24 |
23 7
|
eqeltrrd |
|- ( ph -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. D |-> ( F ` t ) ) e. L^1 ) |
| 26 |
19 21 22 25
|
iblss |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( t e. ( A (,) x ) |-> ( F ` t ) ) e. L^1 ) |
| 27 |
9 26
|
itgcl |
|- ( ( ph /\ x e. ( A [,] B ) ) -> S. ( A (,) x ) ( F ` t ) _d t e. CC ) |
| 28 |
27 1
|
fmptd |
|- ( ph -> G : ( A [,] B ) --> CC ) |