Metamath Proof Explorer


Theorem ftc1lem2

Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses ftc1.g 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹𝑡 ) d 𝑡 )
ftc1.a ( 𝜑𝐴 ∈ ℝ )
ftc1.b ( 𝜑𝐵 ∈ ℝ )
ftc1.le ( 𝜑𝐴𝐵 )
ftc1.s ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 )
ftc1.d ( 𝜑𝐷 ⊆ ℝ )
ftc1.i ( 𝜑𝐹 ∈ 𝐿1 )
ftc1a.f ( 𝜑𝐹 : 𝐷 ⟶ ℂ )
Assertion ftc1lem2 ( 𝜑𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 ftc1.g 𝐺 = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹𝑡 ) d 𝑡 )
2 ftc1.a ( 𝜑𝐴 ∈ ℝ )
3 ftc1.b ( 𝜑𝐵 ∈ ℝ )
4 ftc1.le ( 𝜑𝐴𝐵 )
5 ftc1.s ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 )
6 ftc1.d ( 𝜑𝐷 ⊆ ℝ )
7 ftc1.i ( 𝜑𝐹 ∈ 𝐿1 )
8 ftc1a.f ( 𝜑𝐹 : 𝐷 ⟶ ℂ )
9 fvexd ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑡 ∈ ( 𝐴 (,) 𝑥 ) ) → ( 𝐹𝑡 ) ∈ V )
10 3 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ )
11 10 rexrd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* )
12 elicc2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵 ) ) )
13 2 3 12 syl2anc ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵 ) ) )
14 13 biimpa ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵 ) )
15 14 simp3d ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥𝐵 )
16 iooss2 ( ( 𝐵 ∈ ℝ*𝑥𝐵 ) → ( 𝐴 (,) 𝑥 ) ⊆ ( 𝐴 (,) 𝐵 ) )
17 11 15 16 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑥 ) ⊆ ( 𝐴 (,) 𝐵 ) )
18 5 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ 𝐷 )
19 17 18 sstrd ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑥 ) ⊆ 𝐷 )
20 ioombl ( 𝐴 (,) 𝑥 ) ∈ dom vol
21 20 a1i ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 (,) 𝑥 ) ∈ dom vol )
22 fvexd ( ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑡𝐷 ) → ( 𝐹𝑡 ) ∈ V )
23 8 feqmptd ( 𝜑𝐹 = ( 𝑡𝐷 ↦ ( 𝐹𝑡 ) ) )
24 23 7 eqeltrrd ( 𝜑 → ( 𝑡𝐷 ↦ ( 𝐹𝑡 ) ) ∈ 𝐿1 )
25 24 adantr ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡𝐷 ↦ ( 𝐹𝑡 ) ) ∈ 𝐿1 )
26 19 21 22 25 iblss ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝑥 ) ↦ ( 𝐹𝑡 ) ) ∈ 𝐿1 )
27 9 26 itgcl ( ( 𝜑𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ∫ ( 𝐴 (,) 𝑥 ) ( 𝐹𝑡 ) d 𝑡 ∈ ℂ )
28 27 1 fmptd ( 𝜑𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ )