| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftc1.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
| 2 |
|
ftc1.a |
|- ( ph -> A e. RR ) |
| 3 |
|
ftc1.b |
|- ( ph -> B e. RR ) |
| 4 |
|
ftc1.le |
|- ( ph -> A <_ B ) |
| 5 |
|
ftc1.s |
|- ( ph -> ( A (,) B ) C_ D ) |
| 6 |
|
ftc1.d |
|- ( ph -> D C_ RR ) |
| 7 |
|
ftc1.i |
|- ( ph -> F e. L^1 ) |
| 8 |
|
ftc1.c |
|- ( ph -> C e. ( A (,) B ) ) |
| 9 |
|
ftc1.f |
|- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
| 10 |
|
ftc1.j |
|- J = ( L |`t RR ) |
| 11 |
|
ftc1.k |
|- K = ( L |`t D ) |
| 12 |
|
ftc1.l |
|- L = ( TopOpen ` CCfld ) |
| 13 |
12
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( L |`t RR ) |
| 14 |
10 13
|
eqtr4i |
|- J = ( topGen ` ran (,) ) |
| 15 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 16 |
14 15
|
eqeltri |
|- J e. Top |
| 17 |
16
|
a1i |
|- ( ph -> J e. Top ) |
| 18 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 19 |
2 3 18
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 20 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
| 21 |
20 14
|
eleqtrri |
|- ( A (,) B ) e. J |
| 22 |
21
|
a1i |
|- ( ph -> ( A (,) B ) e. J ) |
| 23 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 24 |
23
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 25 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 26 |
14
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
| 27 |
25 26
|
eqtr4i |
|- RR = U. J |
| 28 |
27
|
ssntr |
|- ( ( ( J e. Top /\ ( A [,] B ) C_ RR ) /\ ( ( A (,) B ) e. J /\ ( A (,) B ) C_ ( A [,] B ) ) ) -> ( A (,) B ) C_ ( ( int ` J ) ` ( A [,] B ) ) ) |
| 29 |
17 19 22 24 28
|
syl22anc |
|- ( ph -> ( A (,) B ) C_ ( ( int ` J ) ` ( A [,] B ) ) ) |
| 30 |
29 8
|
sseldd |
|- ( ph -> C e. ( ( int ` J ) ` ( A [,] B ) ) ) |
| 31 |
|
eqid |
|- ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) |
| 32 |
1 2 3 4 5 6 7 8 9 10 11 12 31
|
ftc1lem6 |
|- ( ph -> ( F ` C ) e. ( ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) limCC C ) ) |
| 33 |
|
ax-resscn |
|- RR C_ CC |
| 34 |
33
|
a1i |
|- ( ph -> RR C_ CC ) |
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ftc1lem3 |
|- ( ph -> F : D --> CC ) |
| 36 |
1 2 3 4 5 6 7 35
|
ftc1lem2 |
|- ( ph -> G : ( A [,] B ) --> CC ) |
| 37 |
10 12 31 34 36 19
|
eldv |
|- ( ph -> ( C ( RR _D G ) ( F ` C ) <-> ( C e. ( ( int ` J ) ` ( A [,] B ) ) /\ ( F ` C ) e. ( ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) limCC C ) ) ) ) |
| 38 |
30 32 37
|
mpbir2and |
|- ( ph -> C ( RR _D G ) ( F ` C ) ) |