Step |
Hyp |
Ref |
Expression |
1 |
|
ftc1.g |
|- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
2 |
|
ftc1.a |
|- ( ph -> A e. RR ) |
3 |
|
ftc1.b |
|- ( ph -> B e. RR ) |
4 |
|
ftc1.le |
|- ( ph -> A <_ B ) |
5 |
|
ftc1.s |
|- ( ph -> ( A (,) B ) C_ D ) |
6 |
|
ftc1.d |
|- ( ph -> D C_ RR ) |
7 |
|
ftc1.i |
|- ( ph -> F e. L^1 ) |
8 |
|
ftc1.c |
|- ( ph -> C e. ( A (,) B ) ) |
9 |
|
ftc1.f |
|- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
10 |
|
ftc1.j |
|- J = ( L |`t RR ) |
11 |
|
ftc1.k |
|- K = ( L |`t D ) |
12 |
|
ftc1.l |
|- L = ( TopOpen ` CCfld ) |
13 |
|
ftc1.h |
|- H = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
ftc1lem3 |
|- ( ph -> F : D --> CC ) |
15 |
5 8
|
sseldd |
|- ( ph -> C e. D ) |
16 |
14 15
|
ffvelrnd |
|- ( ph -> ( F ` C ) e. CC ) |
17 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
18 |
|
ax-resscn |
|- RR C_ CC |
19 |
6 18
|
sstrdi |
|- ( ph -> D C_ CC ) |
20 |
19
|
adantr |
|- ( ( ph /\ w e. RR+ ) -> D C_ CC ) |
21 |
|
xmetres2 |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ D C_ CC ) -> ( ( abs o. - ) |` ( D X. D ) ) e. ( *Met ` D ) ) |
22 |
17 20 21
|
sylancr |
|- ( ( ph /\ w e. RR+ ) -> ( ( abs o. - ) |` ( D X. D ) ) e. ( *Met ` D ) ) |
23 |
17
|
a1i |
|- ( ( ph /\ w e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
24 |
|
eqid |
|- ( ( abs o. - ) |` ( D X. D ) ) = ( ( abs o. - ) |` ( D X. D ) ) |
25 |
12
|
cnfldtopn |
|- L = ( MetOpen ` ( abs o. - ) ) |
26 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) |
27 |
24 25 26
|
metrest |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ D C_ CC ) -> ( L |`t D ) = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) ) |
28 |
17 19 27
|
sylancr |
|- ( ph -> ( L |`t D ) = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) ) |
29 |
11 28
|
eqtrid |
|- ( ph -> K = ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) ) |
30 |
29
|
oveq1d |
|- ( ph -> ( K CnP L ) = ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ) |
31 |
30
|
fveq1d |
|- ( ph -> ( ( K CnP L ) ` C ) = ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) ) |
32 |
9 31
|
eleqtrd |
|- ( ph -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ w e. RR+ ) -> F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) ) |
34 |
|
simpr |
|- ( ( ph /\ w e. RR+ ) -> w e. RR+ ) |
35 |
26 25
|
metcnpi2 |
|- ( ( ( ( ( abs o. - ) |` ( D X. D ) ) e. ( *Met ` D ) /\ ( abs o. - ) e. ( *Met ` CC ) ) /\ ( F e. ( ( ( MetOpen ` ( ( abs o. - ) |` ( D X. D ) ) ) CnP L ) ` C ) /\ w e. RR+ ) ) -> E. v e. RR+ A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) ) |
36 |
22 23 33 34 35
|
syl22anc |
|- ( ( ph /\ w e. RR+ ) -> E. v e. RR+ A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) ) |
37 |
|
simpr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> y e. D ) |
38 |
15
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> C e. D ) |
39 |
37 38
|
ovresd |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( y ( ( abs o. - ) |` ( D X. D ) ) C ) = ( y ( abs o. - ) C ) ) |
40 |
19
|
adantr |
|- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> D C_ CC ) |
41 |
40
|
sselda |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> y e. CC ) |
42 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
43 |
2 3 42
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
44 |
43 18
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
45 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
46 |
45 8
|
sselid |
|- ( ph -> C e. ( A [,] B ) ) |
47 |
44 46
|
sseldd |
|- ( ph -> C e. CC ) |
48 |
47
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> C e. CC ) |
49 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
50 |
49
|
cnmetdval |
|- ( ( y e. CC /\ C e. CC ) -> ( y ( abs o. - ) C ) = ( abs ` ( y - C ) ) ) |
51 |
41 48 50
|
syl2anc |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( y ( abs o. - ) C ) = ( abs ` ( y - C ) ) ) |
52 |
39 51
|
eqtrd |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( y ( ( abs o. - ) |` ( D X. D ) ) C ) = ( abs ` ( y - C ) ) ) |
53 |
52
|
breq1d |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v <-> ( abs ` ( y - C ) ) < v ) ) |
54 |
14
|
adantr |
|- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> F : D --> CC ) |
55 |
54
|
ffvelrnda |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( F ` y ) e. CC ) |
56 |
16
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( F ` C ) e. CC ) |
57 |
49
|
cnmetdval |
|- ( ( ( F ` y ) e. CC /\ ( F ` C ) e. CC ) -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) = ( abs ` ( ( F ` y ) - ( F ` C ) ) ) ) |
58 |
55 56 57
|
syl2anc |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) = ( abs ` ( ( F ` y ) - ( F ` C ) ) ) ) |
59 |
58
|
breq1d |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w <-> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) |
60 |
53 59
|
imbi12d |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ y e. D ) -> ( ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) <-> ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) |
61 |
60
|
ralbidva |
|- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) <-> A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) |
62 |
|
simprll |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> s e. ( ( A [,] B ) \ { C } ) ) |
63 |
|
eldifsni |
|- ( s e. ( ( A [,] B ) \ { C } ) -> s =/= C ) |
64 |
62 63
|
syl |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> s =/= C ) |
65 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> A e. RR ) |
66 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> B e. RR ) |
67 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> A <_ B ) |
68 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> ( A (,) B ) C_ D ) |
69 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> D C_ RR ) |
70 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> F e. L^1 ) |
71 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> C e. ( A (,) B ) ) |
72 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> F e. ( ( K CnP L ) ` C ) ) |
73 |
|
simplrl |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> w e. RR+ ) |
74 |
|
simplrr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> v e. RR+ ) |
75 |
|
simprlr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) |
76 |
|
fvoveq1 |
|- ( y = u -> ( abs ` ( y - C ) ) = ( abs ` ( u - C ) ) ) |
77 |
76
|
breq1d |
|- ( y = u -> ( ( abs ` ( y - C ) ) < v <-> ( abs ` ( u - C ) ) < v ) ) |
78 |
77
|
imbrov2fvoveq |
|- ( y = u -> ( ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) <-> ( ( abs ` ( u - C ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` C ) ) ) < w ) ) ) |
79 |
78
|
rspccva |
|- ( ( A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) /\ u e. D ) -> ( ( abs ` ( u - C ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` C ) ) ) < w ) ) |
80 |
75 79
|
sylan |
|- ( ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) /\ u e. D ) -> ( ( abs ` ( u - C ) ) < v -> ( abs ` ( ( F ` u ) - ( F ` C ) ) ) < w ) ) |
81 |
62
|
eldifad |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> s e. ( A [,] B ) ) |
82 |
|
simprr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> ( abs ` ( s - C ) ) < v ) |
83 |
1 65 66 67 68 69 70 71 72 10 11 12 13 73 74 80 81 82
|
ftc1lem5 |
|- ( ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) /\ s =/= C ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) |
84 |
64 83
|
mpdan |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) /\ ( abs ` ( s - C ) ) < v ) ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) |
85 |
84
|
expr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) -> ( ( abs ` ( s - C ) ) < v -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) |
86 |
85
|
adantld |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ ( s e. ( ( A [,] B ) \ { C } ) /\ A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) ) ) -> ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) |
87 |
86
|
expr |
|- ( ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) /\ s e. ( ( A [,] B ) \ { C } ) ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) -> ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
88 |
87
|
ralrimdva |
|- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. y e. D ( ( abs ` ( y - C ) ) < v -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < w ) -> A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
89 |
61 88
|
sylbid |
|- ( ( ph /\ ( w e. RR+ /\ v e. RR+ ) ) -> ( A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) -> A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
90 |
89
|
anassrs |
|- ( ( ( ph /\ w e. RR+ ) /\ v e. RR+ ) -> ( A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) -> A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
91 |
90
|
reximdva |
|- ( ( ph /\ w e. RR+ ) -> ( E. v e. RR+ A. y e. D ( ( y ( ( abs o. - ) |` ( D X. D ) ) C ) < v -> ( ( F ` y ) ( abs o. - ) ( F ` C ) ) < w ) -> E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) |
92 |
36 91
|
mpd |
|- ( ( ph /\ w e. RR+ ) -> E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) |
93 |
92
|
ralrimiva |
|- ( ph -> A. w e. RR+ E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) |
94 |
1 2 3 4 5 6 7 14
|
ftc1lem2 |
|- ( ph -> G : ( A [,] B ) --> CC ) |
95 |
94 44 46
|
dvlem |
|- ( ( ph /\ z e. ( ( A [,] B ) \ { C } ) ) -> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) e. CC ) |
96 |
95 13
|
fmptd |
|- ( ph -> H : ( ( A [,] B ) \ { C } ) --> CC ) |
97 |
44
|
ssdifssd |
|- ( ph -> ( ( A [,] B ) \ { C } ) C_ CC ) |
98 |
96 97 47
|
ellimc3 |
|- ( ph -> ( ( F ` C ) e. ( H limCC C ) <-> ( ( F ` C ) e. CC /\ A. w e. RR+ E. v e. RR+ A. s e. ( ( A [,] B ) \ { C } ) ( ( s =/= C /\ ( abs ` ( s - C ) ) < v ) -> ( abs ` ( ( H ` s ) - ( F ` C ) ) ) < w ) ) ) ) |
99 |
16 93 98
|
mpbir2and |
|- ( ph -> ( F ` C ) e. ( H limCC C ) ) |