Metamath Proof Explorer


Theorem ftc1

Description: The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at C with derivative F ( C ) if the original function is continuous at C . This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses ftc1.g G = x A B A x F t dt
ftc1.a φ A
ftc1.b φ B
ftc1.le φ A B
ftc1.s φ A B D
ftc1.d φ D
ftc1.i φ F 𝐿 1
ftc1.c φ C A B
ftc1.f φ F K CnP L C
ftc1.j J = L 𝑡
ftc1.k K = L 𝑡 D
ftc1.l L = TopOpen fld
Assertion ftc1 φ C G F C

Proof

Step Hyp Ref Expression
1 ftc1.g G = x A B A x F t dt
2 ftc1.a φ A
3 ftc1.b φ B
4 ftc1.le φ A B
5 ftc1.s φ A B D
6 ftc1.d φ D
7 ftc1.i φ F 𝐿 1
8 ftc1.c φ C A B
9 ftc1.f φ F K CnP L C
10 ftc1.j J = L 𝑡
11 ftc1.k K = L 𝑡 D
12 ftc1.l L = TopOpen fld
13 12 tgioo2 topGen ran . = L 𝑡
14 10 13 eqtr4i J = topGen ran .
15 retop topGen ran . Top
16 14 15 eqeltri J Top
17 16 a1i φ J Top
18 iccssre A B A B
19 2 3 18 syl2anc φ A B
20 iooretop A B topGen ran .
21 20 14 eleqtrri A B J
22 21 a1i φ A B J
23 ioossicc A B A B
24 23 a1i φ A B A B
25 uniretop = topGen ran .
26 14 unieqi J = topGen ran .
27 25 26 eqtr4i = J
28 27 ssntr J Top A B A B J A B A B A B int J A B
29 17 19 22 24 28 syl22anc φ A B int J A B
30 29 8 sseldd φ C int J A B
31 eqid z A B C G z G C z C = z A B C G z G C z C
32 1 2 3 4 5 6 7 8 9 10 11 12 31 ftc1lem6 φ F C z A B C G z G C z C lim C
33 ax-resscn
34 33 a1i φ
35 1 2 3 4 5 6 7 8 9 10 11 12 ftc1lem3 φ F : D
36 1 2 3 4 5 6 7 35 ftc1lem2 φ G : A B
37 10 12 31 34 36 19 eldv φ C G F C C int J A B F C z A B C G z G C z C lim C
38 30 32 37 mpbir2and φ C G F C