| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> A e. dom F ) |
| 2 |
|
fvressn |
|- ( A e. dom F -> ( ( F |` { A } ) ` A ) = ( F ` A ) ) |
| 3 |
2
|
adantl |
|- ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( ( F |` { A } ) ` A ) = ( F ` A ) ) |
| 4 |
|
eldmressnsn |
|- ( A e. dom F -> A e. dom ( F |` { A } ) ) |
| 5 |
|
fvelrn |
|- ( ( Fun ( F |` { A } ) /\ A e. dom ( F |` { A } ) ) -> ( ( F |` { A } ) ` A ) e. ran ( F |` { A } ) ) |
| 6 |
4 5
|
sylan2 |
|- ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( ( F |` { A } ) ` A ) e. ran ( F |` { A } ) ) |
| 7 |
3 6
|
eqeltrrd |
|- ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( F ` A ) e. ran ( F |` { A } ) ) |
| 8 |
|
fvrnressn |
|- ( A e. dom F -> ( ( F ` A ) e. ran ( F |` { A } ) -> ( F ` A ) e. ran F ) ) |
| 9 |
1 7 8
|
sylc |
|- ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( F ` A ) e. ran F ) |