Metamath Proof Explorer


Theorem funressndmfvrn

Description: The value of a function F at a set A is in the range of the function F if A is in the domain of the function F . It is sufficient that F is a function at A . (Contributed by AV, 1-Sep-2022)

Ref Expression
Assertion funressndmfvrn
|- ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( F ` A ) e. ran F )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> A e. dom F )
2 fvressn
 |-  ( A e. dom F -> ( ( F |` { A } ) ` A ) = ( F ` A ) )
3 2 adantl
 |-  ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( ( F |` { A } ) ` A ) = ( F ` A ) )
4 eldmressnsn
 |-  ( A e. dom F -> A e. dom ( F |` { A } ) )
5 fvelrn
 |-  ( ( Fun ( F |` { A } ) /\ A e. dom ( F |` { A } ) ) -> ( ( F |` { A } ) ` A ) e. ran ( F |` { A } ) )
6 4 5 sylan2
 |-  ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( ( F |` { A } ) ` A ) e. ran ( F |` { A } ) )
7 3 6 eqeltrrd
 |-  ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( F ` A ) e. ran ( F |` { A } ) )
8 fvrnressn
 |-  ( A e. dom F -> ( ( F ` A ) e. ran ( F |` { A } ) -> ( F ` A ) e. ran F ) )
9 1 7 8 sylc
 |-  ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( F ` A ) e. ran F )