Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ dom 𝐹 ) |
2 |
|
fvressn |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
3 |
2
|
adantl |
⊢ ( ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
4 |
|
eldmressnsn |
⊢ ( 𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) |
5 |
|
fvelrn |
⊢ ( ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) ∈ ran ( 𝐹 ↾ { 𝐴 } ) ) |
6 |
4 5
|
sylan2 |
⊢ ( ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) → ( ( 𝐹 ↾ { 𝐴 } ) ‘ 𝐴 ) ∈ ran ( 𝐹 ↾ { 𝐴 } ) ) |
7 |
3 6
|
eqeltrrd |
⊢ ( ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran ( 𝐹 ↾ { 𝐴 } ) ) |
8 |
|
fvrnressn |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝐴 ) ∈ ran ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) ) |
9 |
1 7 8
|
sylc |
⊢ ( ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |