| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptnn04if.g |  |-  G = ( n e. NN0 |-> if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) | 
						
							| 2 |  | fvmptnn04if.s |  |-  ( ph -> S e. NN ) | 
						
							| 3 |  | fvmptnn04if.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 4 | 2 | 3ad2ant1 |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> S e. NN ) | 
						
							| 5 | 3 | 3ad2ant1 |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> N e. NN0 ) | 
						
							| 6 |  | simp3 |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> [_ N / n ]_ C e. V ) | 
						
							| 7 |  | nnne0 |  |-  ( S e. NN -> S =/= 0 ) | 
						
							| 8 | 7 | neneqd |  |-  ( S e. NN -> -. S = 0 ) | 
						
							| 9 | 2 8 | syl |  |-  ( ph -> -. S = 0 ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ N = S ) -> -. S = 0 ) | 
						
							| 11 |  | eqeq1 |  |-  ( N = S -> ( N = 0 <-> S = 0 ) ) | 
						
							| 12 | 11 | notbid |  |-  ( N = S -> ( -. N = 0 <-> -. S = 0 ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ph /\ N = S ) -> ( -. N = 0 <-> -. S = 0 ) ) | 
						
							| 14 | 10 13 | mpbird |  |-  ( ( ph /\ N = S ) -> -. N = 0 ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> -. N = 0 ) | 
						
							| 16 | 15 | pm2.21d |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> ( N = 0 -> [_ N / n ]_ C = [_ N / n ]_ A ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) /\ N = 0 ) -> [_ N / n ]_ C = [_ N / n ]_ A ) | 
						
							| 18 | 3 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 19 | 2 | nnred |  |-  ( ph -> S e. RR ) | 
						
							| 20 | 18 19 | lttri3d |  |-  ( ph -> ( N = S <-> ( -. N < S /\ -. S < N ) ) ) | 
						
							| 21 | 20 | simprbda |  |-  ( ( ph /\ N = S ) -> -. N < S ) | 
						
							| 22 | 21 | pm2.21d |  |-  ( ( ph /\ N = S ) -> ( N < S -> [_ N / n ]_ C = [_ N / n ]_ B ) ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> ( N < S -> [_ N / n ]_ C = [_ N / n ]_ B ) ) | 
						
							| 24 | 23 | a1d |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> ( 0 < N -> ( N < S -> [_ N / n ]_ C = [_ N / n ]_ B ) ) ) | 
						
							| 25 | 24 | 3imp |  |-  ( ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) /\ 0 < N /\ N < S ) -> [_ N / n ]_ C = [_ N / n ]_ B ) | 
						
							| 26 |  | eqidd |  |-  ( ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) /\ N = S ) -> [_ N / n ]_ C = [_ N / n ]_ C ) | 
						
							| 27 | 20 | simplbda |  |-  ( ( ph /\ N = S ) -> -. S < N ) | 
						
							| 28 | 27 | 3adant3 |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> -. S < N ) | 
						
							| 29 | 28 | pm2.21d |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> ( S < N -> [_ N / n ]_ C = [_ N / n ]_ D ) ) | 
						
							| 30 | 29 | imp |  |-  ( ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) /\ S < N ) -> [_ N / n ]_ C = [_ N / n ]_ D ) | 
						
							| 31 | 1 4 5 6 17 25 26 30 | fvmptnn04if |  |-  ( ( ph /\ N = S /\ [_ N / n ]_ C e. V ) -> ( G ` N ) = [_ N / n ]_ C ) |