| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptnn04if.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  𝐴 ,  if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) ) ) | 
						
							| 2 |  | fvmptnn04if.s | ⊢ ( 𝜑  →  𝑆  ∈  ℕ ) | 
						
							| 3 |  | fvmptnn04if.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  𝑆  ∈  ℕ ) | 
						
							| 5 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 ) | 
						
							| 7 |  | nnne0 | ⊢ ( 𝑆  ∈  ℕ  →  𝑆  ≠  0 ) | 
						
							| 8 | 7 | neneqd | ⊢ ( 𝑆  ∈  ℕ  →  ¬  𝑆  =  0 ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  ¬  𝑆  =  0 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆 )  →  ¬  𝑆  =  0 ) | 
						
							| 11 |  | eqeq1 | ⊢ ( 𝑁  =  𝑆  →  ( 𝑁  =  0  ↔  𝑆  =  0 ) ) | 
						
							| 12 | 11 | notbid | ⊢ ( 𝑁  =  𝑆  →  ( ¬  𝑁  =  0  ↔  ¬  𝑆  =  0 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆 )  →  ( ¬  𝑁  =  0  ↔  ¬  𝑆  =  0 ) ) | 
						
							| 14 | 10 13 | mpbird | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆 )  →  ¬  𝑁  =  0 ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  ¬  𝑁  =  0 ) | 
						
							| 16 | 15 | pm2.21d | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  ( 𝑁  =  0  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  ∧  𝑁  =  0 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ) | 
						
							| 18 | 3 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 19 | 2 | nnred | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 20 | 18 19 | lttri3d | ⊢ ( 𝜑  →  ( 𝑁  =  𝑆  ↔  ( ¬  𝑁  <  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) ) | 
						
							| 21 | 20 | simprbda | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆 )  →  ¬  𝑁  <  𝑆 ) | 
						
							| 22 | 21 | pm2.21d | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆 )  →  ( 𝑁  <  𝑆  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 23 | 22 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  ( 𝑁  <  𝑆  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 24 | 23 | a1d | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  ( 0  <  𝑁  →  ( 𝑁  <  𝑆  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) ) | 
						
							| 25 | 24 | 3imp | ⊢ ( ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  ∧  0  <  𝑁  ∧  𝑁  <  𝑆 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) | 
						
							| 26 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  ∧  𝑁  =  𝑆 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ) | 
						
							| 27 | 20 | simplbda | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆 )  →  ¬  𝑆  <  𝑁 ) | 
						
							| 28 | 27 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  ¬  𝑆  <  𝑁 ) | 
						
							| 29 | 28 | pm2.21d | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  ( 𝑆  <  𝑁  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  ∧  𝑆  <  𝑁 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ) | 
						
							| 31 | 1 4 5 6 17 25 26 30 | fvmptnn04if | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 )  →  ( 𝐺 ‘ 𝑁 )  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ) |