Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptnn04if.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ) |
2 |
|
fvmptnn04if.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
3 |
|
fvmptnn04if.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
4 |
|
fvmptnn04if.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
5 |
|
fvmptnn04if.a |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑌 = ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ) |
6 |
|
fvmptnn04if.b |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆 ) → 𝑌 = ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) |
7 |
|
fvmptnn04if.c |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑆 ) → 𝑌 = ⦋ 𝑁 / 𝑛 ⦌ 𝐶 ) |
8 |
|
fvmptnn04if.d |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝑁 ) → 𝑌 = ⦋ 𝑁 / 𝑛 ⦌ 𝐷 ) |
9 |
|
csbif |
⊢ ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) = if ( [ 𝑁 / 𝑛 ] 𝑛 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) |
10 |
|
eqsbc1 |
⊢ ( 𝑁 ∈ ℕ0 → ( [ 𝑁 / 𝑛 ] 𝑛 = 0 ↔ 𝑁 = 0 ) ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → ( [ 𝑁 / 𝑛 ] 𝑛 = 0 ↔ 𝑁 = 0 ) ) |
12 |
|
csbif |
⊢ ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) = if ( [ 𝑁 / 𝑛 ] 𝑛 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) |
13 |
|
eqsbc1 |
⊢ ( 𝑁 ∈ ℕ0 → ( [ 𝑁 / 𝑛 ] 𝑛 = 𝑆 ↔ 𝑁 = 𝑆 ) ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → ( [ 𝑁 / 𝑛 ] 𝑛 = 𝑆 ↔ 𝑁 = 𝑆 ) ) |
15 |
|
csbif |
⊢ ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) = if ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) |
16 |
|
sbcbr2g |
⊢ ( 𝑁 ∈ ℕ0 → ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 ↔ 𝑆 < ⦋ 𝑁 / 𝑛 ⦌ 𝑛 ) ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 ↔ 𝑆 < ⦋ 𝑁 / 𝑛 ⦌ 𝑛 ) ) |
18 |
|
csbvarg |
⊢ ( 𝑁 ∈ ℕ0 → ⦋ 𝑁 / 𝑛 ⦌ 𝑛 = 𝑁 ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ 𝑛 = 𝑁 ) |
20 |
19
|
breq2d |
⊢ ( 𝜑 → ( 𝑆 < ⦋ 𝑁 / 𝑛 ⦌ 𝑛 ↔ 𝑆 < 𝑁 ) ) |
21 |
17 20
|
bitrd |
⊢ ( 𝜑 → ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 ↔ 𝑆 < 𝑁 ) ) |
22 |
21
|
ifbid |
⊢ ( 𝜑 → if ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) = if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) |
23 |
15 22
|
eqtrid |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) = if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) |
24 |
14 23
|
ifbieq2d |
⊢ ( 𝜑 → if ( [ 𝑁 / 𝑛 ] 𝑛 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) = if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) |
25 |
12 24
|
eqtrid |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) = if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) |
26 |
11 25
|
ifbieq2d |
⊢ ( 𝜑 → if ( [ 𝑁 / 𝑛 ] 𝑛 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) = if ( 𝑁 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) ) |
27 |
9 26
|
eqtrid |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) = if ( 𝑁 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) ) |
28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑌 ∈ 𝑉 ) |
29 |
5 28
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) |
30 |
7
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐶 = 𝑌 ) |
31 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ 𝑁 = 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐶 = 𝑌 ) |
32 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ 𝑁 = 𝑆 ) → 𝑌 ∈ 𝑉 ) |
33 |
31 32
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ 𝑁 = 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐶 ∈ 𝑉 ) |
34 |
8
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐷 = 𝑌 ) |
35 |
34
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐷 = 𝑌 ) |
36 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝑆 < 𝑁 ) → 𝑌 ∈ 𝑉 ) |
37 |
35 36
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐷 ∈ 𝑉 ) |
38 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → 𝜑 ) |
39 |
|
anass |
⊢ ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) ↔ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) |
40 |
39
|
bicomi |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ↔ ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) ) |
41 |
40
|
bianassc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) ↔ ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝜑 ) ∧ ¬ 𝑆 < 𝑁 ) ) |
42 |
|
an32 |
⊢ ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝜑 ) ↔ ( ( ¬ 𝑁 = 0 ∧ 𝜑 ) ∧ ¬ 𝑁 = 𝑆 ) ) |
43 |
|
ancom |
⊢ ( ( ¬ 𝑁 = 0 ∧ 𝜑 ) ↔ ( 𝜑 ∧ ¬ 𝑁 = 0 ) ) |
44 |
43
|
anbi1i |
⊢ ( ( ( ¬ 𝑁 = 0 ∧ 𝜑 ) ∧ ¬ 𝑁 = 𝑆 ) ↔ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ) |
45 |
42 44
|
bitri |
⊢ ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝜑 ) ↔ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ) |
46 |
45
|
anbi1i |
⊢ ( ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝜑 ) ∧ ¬ 𝑆 < 𝑁 ) ↔ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) ) |
47 |
41 46
|
bitri |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) ↔ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) ) |
48 |
|
df-ne |
⊢ ( 𝑁 ≠ 0 ↔ ¬ 𝑁 = 0 ) |
49 |
|
elnnne0 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
50 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
51 |
49 50
|
sylbir |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) → 0 < 𝑁 ) |
52 |
51
|
expcom |
⊢ ( 𝑁 ≠ 0 → ( 𝑁 ∈ ℕ0 → 0 < 𝑁 ) ) |
53 |
48 52
|
sylbir |
⊢ ( ¬ 𝑁 = 0 → ( 𝑁 ∈ ℕ0 → 0 < 𝑁 ) ) |
54 |
53
|
adantr |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) → ( 𝑁 ∈ ℕ0 → 0 < 𝑁 ) ) |
55 |
3 54
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 0 < 𝑁 ) |
56 |
47 55
|
sylbir |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → 0 < 𝑁 ) |
57 |
3
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑁 ∈ ℝ ) |
59 |
2
|
nnred |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑆 ∈ ℝ ) |
61 |
57 59
|
lenltd |
⊢ ( 𝜑 → ( 𝑁 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑁 ) ) |
62 |
61
|
biimprd |
⊢ ( 𝜑 → ( ¬ 𝑆 < 𝑁 → 𝑁 ≤ 𝑆 ) ) |
63 |
62
|
adantld |
⊢ ( 𝜑 → ( ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) → 𝑁 ≤ 𝑆 ) ) |
64 |
63
|
adantld |
⊢ ( 𝜑 → ( ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) → 𝑁 ≤ 𝑆 ) ) |
65 |
64
|
imp |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑁 ≤ 𝑆 ) |
66 |
|
nesym |
⊢ ( 𝑆 ≠ 𝑁 ↔ ¬ 𝑁 = 𝑆 ) |
67 |
66
|
biimpri |
⊢ ( ¬ 𝑁 = 𝑆 → 𝑆 ≠ 𝑁 ) |
68 |
67
|
adantr |
⊢ ( ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) → 𝑆 ≠ 𝑁 ) |
69 |
68
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑆 ≠ 𝑁 ) |
70 |
58 60 65 69
|
leneltd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑁 < 𝑆 ) |
71 |
47 70
|
sylbir |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → 𝑁 < 𝑆 ) |
72 |
6
|
eqcomd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐵 = 𝑌 ) |
73 |
38 56 71 72
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐵 = 𝑌 ) |
74 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → 𝑌 ∈ 𝑉 ) |
75 |
73 74
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ∈ 𝑉 ) |
76 |
37 75
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) → if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ∈ 𝑉 ) |
77 |
33 76
|
ifclda |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ∈ 𝑉 ) |
78 |
29 77
|
ifclda |
⊢ ( 𝜑 → if ( 𝑁 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) ∈ 𝑉 ) |
79 |
27 78
|
eqeltrd |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ∈ 𝑉 ) |
80 |
1
|
fvmpts |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ∈ 𝑉 ) → ( 𝐺 ‘ 𝑁 ) = ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ) |
81 |
3 79 80
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑁 ) = ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ) |
82 |
5
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = 𝑌 ) |
83 |
35 73
|
ifeqda |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) → if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) = 𝑌 ) |
84 |
31 83
|
ifeqda |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) = 𝑌 ) |
85 |
82 84
|
ifeqda |
⊢ ( 𝜑 → if ( 𝑁 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) = 𝑌 ) |
86 |
81 27 85
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑁 ) = 𝑌 ) |