| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptnn04if.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  𝐴 ,  if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) ) ) | 
						
							| 2 |  | fvmptnn04if.s | ⊢ ( 𝜑  →  𝑆  ∈  ℕ ) | 
						
							| 3 |  | fvmptnn04if.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | fvmptnn04if.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 5 |  | fvmptnn04if.a | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  𝑌  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ) | 
						
							| 6 |  | fvmptnn04if.b | ⊢ ( ( 𝜑  ∧  0  <  𝑁  ∧  𝑁  <  𝑆 )  →  𝑌  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) | 
						
							| 7 |  | fvmptnn04if.c | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆 )  →  𝑌  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ) | 
						
							| 8 |  | fvmptnn04if.d | ⊢ ( ( 𝜑  ∧  𝑆  <  𝑁 )  →  𝑌  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ) | 
						
							| 9 |  | csbif | ⊢ ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  0 ,  𝐴 ,  if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) )  =  if ( [ 𝑁  /  𝑛 ] 𝑛  =  0 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ,  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) ) | 
						
							| 10 |  | eqsbc1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( [ 𝑁  /  𝑛 ] 𝑛  =  0  ↔  𝑁  =  0 ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  ( [ 𝑁  /  𝑛 ] 𝑛  =  0  ↔  𝑁  =  0 ) ) | 
						
							| 12 |  | csbif | ⊢ ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) )  =  if ( [ 𝑁  /  𝑛 ] 𝑛  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) | 
						
							| 13 |  | eqsbc1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( [ 𝑁  /  𝑛 ] 𝑛  =  𝑆  ↔  𝑁  =  𝑆 ) ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  ( [ 𝑁  /  𝑛 ] 𝑛  =  𝑆  ↔  𝑁  =  𝑆 ) ) | 
						
							| 15 |  | csbif | ⊢ ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 )  =  if ( [ 𝑁  /  𝑛 ] 𝑆  <  𝑛 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) | 
						
							| 16 |  | sbcbr2g | ⊢ ( 𝑁  ∈  ℕ0  →  ( [ 𝑁  /  𝑛 ] 𝑆  <  𝑛  ↔  𝑆  <  ⦋ 𝑁  /  𝑛 ⦌ 𝑛 ) ) | 
						
							| 17 | 3 16 | syl | ⊢ ( 𝜑  →  ( [ 𝑁  /  𝑛 ] 𝑆  <  𝑛  ↔  𝑆  <  ⦋ 𝑁  /  𝑛 ⦌ 𝑛 ) ) | 
						
							| 18 |  | csbvarg | ⊢ ( 𝑁  ∈  ℕ0  →  ⦋ 𝑁  /  𝑛 ⦌ 𝑛  =  𝑁 ) | 
						
							| 19 | 3 18 | syl | ⊢ ( 𝜑  →  ⦋ 𝑁  /  𝑛 ⦌ 𝑛  =  𝑁 ) | 
						
							| 20 | 19 | breq2d | ⊢ ( 𝜑  →  ( 𝑆  <  ⦋ 𝑁  /  𝑛 ⦌ 𝑛  ↔  𝑆  <  𝑁 ) ) | 
						
							| 21 | 17 20 | bitrd | ⊢ ( 𝜑  →  ( [ 𝑁  /  𝑛 ] 𝑆  <  𝑛  ↔  𝑆  <  𝑁 ) ) | 
						
							| 22 | 21 | ifbid | ⊢ ( 𝜑  →  if ( [ 𝑁  /  𝑛 ] 𝑆  <  𝑛 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 )  =  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 23 | 15 22 | eqtrid | ⊢ ( 𝜑  →  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 )  =  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) | 
						
							| 24 | 14 23 | ifbieq2d | ⊢ ( 𝜑  →  if ( [ 𝑁  /  𝑛 ] 𝑛  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) )  =  if ( 𝑁  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) ) | 
						
							| 25 | 12 24 | eqtrid | ⊢ ( 𝜑  →  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) )  =  if ( 𝑁  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) ) | 
						
							| 26 | 11 25 | ifbieq2d | ⊢ ( 𝜑  →  if ( [ 𝑁  /  𝑛 ] 𝑛  =  0 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ,  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) )  =  if ( 𝑁  =  0 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ,  if ( 𝑁  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) ) ) | 
						
							| 27 | 9 26 | eqtrid | ⊢ ( 𝜑  →  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  0 ,  𝐴 ,  if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) )  =  if ( 𝑁  =  0 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ,  if ( 𝑁  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) ) ) | 
						
							| 28 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  𝑌  ∈  𝑉 ) | 
						
							| 29 | 5 28 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐴  ∈  𝑉 ) | 
						
							| 30 | 7 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑁  =  𝑆 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  𝑌 ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  𝑁  =  𝑆 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  =  𝑌 ) | 
						
							| 32 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  𝑁  =  𝑆 )  →  𝑌  ∈  𝑉 ) | 
						
							| 33 | 31 32 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  𝑁  =  𝑆 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐶  ∈  𝑉 ) | 
						
							| 34 | 8 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑆  <  𝑁 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐷  =  𝑌 ) | 
						
							| 35 | 34 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  𝑆  <  𝑁 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐷  =  𝑌 ) | 
						
							| 36 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  𝑆  <  𝑁 )  →  𝑌  ∈  𝑉 ) | 
						
							| 37 | 35 36 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  𝑆  <  𝑁 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐷  ∈  𝑉 ) | 
						
							| 38 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 )  →  𝜑 ) | 
						
							| 39 |  | anass | ⊢ ( ( ( ¬  𝑁  =  0  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 )  ↔  ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) ) | 
						
							| 40 | 39 | bicomi | ⊢ ( ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) )  ↔  ( ( ¬  𝑁  =  0  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 ) ) | 
						
							| 41 | 40 | bianassc | ⊢ ( ( 𝜑  ∧  ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) )  ↔  ( ( ( ¬  𝑁  =  0  ∧  ¬  𝑁  =  𝑆 )  ∧  𝜑 )  ∧  ¬  𝑆  <  𝑁 ) ) | 
						
							| 42 |  | an32 | ⊢ ( ( ( ¬  𝑁  =  0  ∧  ¬  𝑁  =  𝑆 )  ∧  𝜑 )  ↔  ( ( ¬  𝑁  =  0  ∧  𝜑 )  ∧  ¬  𝑁  =  𝑆 ) ) | 
						
							| 43 |  | ancom | ⊢ ( ( ¬  𝑁  =  0  ∧  𝜑 )  ↔  ( 𝜑  ∧  ¬  𝑁  =  0 ) ) | 
						
							| 44 | 43 | anbi1i | ⊢ ( ( ( ¬  𝑁  =  0  ∧  𝜑 )  ∧  ¬  𝑁  =  𝑆 )  ↔  ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 ) ) | 
						
							| 45 | 42 44 | bitri | ⊢ ( ( ( ¬  𝑁  =  0  ∧  ¬  𝑁  =  𝑆 )  ∧  𝜑 )  ↔  ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 ) ) | 
						
							| 46 | 45 | anbi1i | ⊢ ( ( ( ( ¬  𝑁  =  0  ∧  ¬  𝑁  =  𝑆 )  ∧  𝜑 )  ∧  ¬  𝑆  <  𝑁 )  ↔  ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 ) ) | 
						
							| 47 | 41 46 | bitri | ⊢ ( ( 𝜑  ∧  ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) )  ↔  ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 ) ) | 
						
							| 48 |  | df-ne | ⊢ ( 𝑁  ≠  0  ↔  ¬  𝑁  =  0 ) | 
						
							| 49 |  | elnnne0 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  ∈  ℕ0  ∧  𝑁  ≠  0 ) ) | 
						
							| 50 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 51 | 49 50 | sylbir | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ≠  0 )  →  0  <  𝑁 ) | 
						
							| 52 | 51 | expcom | ⊢ ( 𝑁  ≠  0  →  ( 𝑁  ∈  ℕ0  →  0  <  𝑁 ) ) | 
						
							| 53 | 48 52 | sylbir | ⊢ ( ¬  𝑁  =  0  →  ( 𝑁  ∈  ℕ0  →  0  <  𝑁 ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) )  →  ( 𝑁  ∈  ℕ0  →  0  <  𝑁 ) ) | 
						
							| 55 | 3 54 | mpan9 | ⊢ ( ( 𝜑  ∧  ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) )  →  0  <  𝑁 ) | 
						
							| 56 | 47 55 | sylbir | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 )  →  0  <  𝑁 ) | 
						
							| 57 | 3 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 59 | 2 | nnred | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) )  →  𝑆  ∈  ℝ ) | 
						
							| 61 | 57 59 | lenltd | ⊢ ( 𝜑  →  ( 𝑁  ≤  𝑆  ↔  ¬  𝑆  <  𝑁 ) ) | 
						
							| 62 | 61 | biimprd | ⊢ ( 𝜑  →  ( ¬  𝑆  <  𝑁  →  𝑁  ≤  𝑆 ) ) | 
						
							| 63 | 62 | adantld | ⊢ ( 𝜑  →  ( ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 )  →  𝑁  ≤  𝑆 ) ) | 
						
							| 64 | 63 | adantld | ⊢ ( 𝜑  →  ( ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) )  →  𝑁  ≤  𝑆 ) ) | 
						
							| 65 | 64 | imp | ⊢ ( ( 𝜑  ∧  ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) )  →  𝑁  ≤  𝑆 ) | 
						
							| 66 |  | nesym | ⊢ ( 𝑆  ≠  𝑁  ↔  ¬  𝑁  =  𝑆 ) | 
						
							| 67 | 66 | biimpri | ⊢ ( ¬  𝑁  =  𝑆  →  𝑆  ≠  𝑁 ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 )  →  𝑆  ≠  𝑁 ) | 
						
							| 69 | 68 | ad2antll | ⊢ ( ( 𝜑  ∧  ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) )  →  𝑆  ≠  𝑁 ) | 
						
							| 70 | 58 60 65 69 | leneltd | ⊢ ( ( 𝜑  ∧  ( ¬  𝑁  =  0  ∧  ( ¬  𝑁  =  𝑆  ∧  ¬  𝑆  <  𝑁 ) ) )  →  𝑁  <  𝑆 ) | 
						
							| 71 | 47 70 | sylbir | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 )  →  𝑁  <  𝑆 ) | 
						
							| 72 | 6 | eqcomd | ⊢ ( ( 𝜑  ∧  0  <  𝑁  ∧  𝑁  <  𝑆 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  𝑌 ) | 
						
							| 73 | 38 56 71 72 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  𝑌 ) | 
						
							| 74 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 )  →  𝑌  ∈  𝑉 ) | 
						
							| 75 | 73 74 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  ∧  ¬  𝑆  <  𝑁 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 ) | 
						
							| 76 | 37 75 | ifclda | ⊢ ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  →  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 )  ∈  𝑉 ) | 
						
							| 77 | 33 76 | ifclda | ⊢ ( ( 𝜑  ∧  ¬  𝑁  =  0 )  →  if ( 𝑁  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) )  ∈  𝑉 ) | 
						
							| 78 | 29 77 | ifclda | ⊢ ( 𝜑  →  if ( 𝑁  =  0 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ,  if ( 𝑁  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) )  ∈  𝑉 ) | 
						
							| 79 | 27 78 | eqeltrd | ⊢ ( 𝜑  →  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  0 ,  𝐴 ,  if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) )  ∈  𝑉 ) | 
						
							| 80 | 1 | fvmpts | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  0 ,  𝐴 ,  if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) )  ∈  𝑉 )  →  ( 𝐺 ‘ 𝑁 )  =  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  0 ,  𝐴 ,  if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) ) ) | 
						
							| 81 | 3 79 80 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑁 )  =  ⦋ 𝑁  /  𝑛 ⦌ if ( 𝑛  =  0 ,  𝐴 ,  if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) ) ) | 
						
							| 82 | 5 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑁  =  0 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐴  =  𝑌 ) | 
						
							| 83 | 35 73 | ifeqda | ⊢ ( ( ( 𝜑  ∧  ¬  𝑁  =  0 )  ∧  ¬  𝑁  =  𝑆 )  →  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 )  =  𝑌 ) | 
						
							| 84 | 31 83 | ifeqda | ⊢ ( ( 𝜑  ∧  ¬  𝑁  =  0 )  →  if ( 𝑁  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) )  =  𝑌 ) | 
						
							| 85 | 82 84 | ifeqda | ⊢ ( 𝜑  →  if ( 𝑁  =  0 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ,  if ( 𝑁  =  𝑆 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ,  if ( 𝑆  <  𝑁 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ,  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) ) )  =  𝑌 ) | 
						
							| 86 | 81 27 85 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑁 )  =  𝑌 ) |