| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptnn04if.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ) |
| 2 |
|
fvmptnn04if.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
| 3 |
|
fvmptnn04if.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
fvmptnn04if.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 5 |
|
fvmptnn04if.a |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑌 = ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ) |
| 6 |
|
fvmptnn04if.b |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆 ) → 𝑌 = ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) |
| 7 |
|
fvmptnn04if.c |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑆 ) → 𝑌 = ⦋ 𝑁 / 𝑛 ⦌ 𝐶 ) |
| 8 |
|
fvmptnn04if.d |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝑁 ) → 𝑌 = ⦋ 𝑁 / 𝑛 ⦌ 𝐷 ) |
| 9 |
|
csbif |
⊢ ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) = if ( [ 𝑁 / 𝑛 ] 𝑛 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) |
| 10 |
|
eqsbc1 |
⊢ ( 𝑁 ∈ ℕ0 → ( [ 𝑁 / 𝑛 ] 𝑛 = 0 ↔ 𝑁 = 0 ) ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → ( [ 𝑁 / 𝑛 ] 𝑛 = 0 ↔ 𝑁 = 0 ) ) |
| 12 |
|
csbif |
⊢ ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) = if ( [ 𝑁 / 𝑛 ] 𝑛 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) |
| 13 |
|
eqsbc1 |
⊢ ( 𝑁 ∈ ℕ0 → ( [ 𝑁 / 𝑛 ] 𝑛 = 𝑆 ↔ 𝑁 = 𝑆 ) ) |
| 14 |
3 13
|
syl |
⊢ ( 𝜑 → ( [ 𝑁 / 𝑛 ] 𝑛 = 𝑆 ↔ 𝑁 = 𝑆 ) ) |
| 15 |
|
csbif |
⊢ ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) = if ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) |
| 16 |
|
sbcbr2g |
⊢ ( 𝑁 ∈ ℕ0 → ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 ↔ 𝑆 < ⦋ 𝑁 / 𝑛 ⦌ 𝑛 ) ) |
| 17 |
3 16
|
syl |
⊢ ( 𝜑 → ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 ↔ 𝑆 < ⦋ 𝑁 / 𝑛 ⦌ 𝑛 ) ) |
| 18 |
|
csbvarg |
⊢ ( 𝑁 ∈ ℕ0 → ⦋ 𝑁 / 𝑛 ⦌ 𝑛 = 𝑁 ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ 𝑛 = 𝑁 ) |
| 20 |
19
|
breq2d |
⊢ ( 𝜑 → ( 𝑆 < ⦋ 𝑁 / 𝑛 ⦌ 𝑛 ↔ 𝑆 < 𝑁 ) ) |
| 21 |
17 20
|
bitrd |
⊢ ( 𝜑 → ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 ↔ 𝑆 < 𝑁 ) ) |
| 22 |
21
|
ifbid |
⊢ ( 𝜑 → if ( [ 𝑁 / 𝑛 ] 𝑆 < 𝑛 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) = if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) |
| 23 |
15 22
|
eqtrid |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) = if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) |
| 24 |
14 23
|
ifbieq2d |
⊢ ( 𝜑 → if ( [ 𝑁 / 𝑛 ] 𝑛 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) = if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) |
| 25 |
12 24
|
eqtrid |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) = if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) |
| 26 |
11 25
|
ifbieq2d |
⊢ ( 𝜑 → if ( [ 𝑁 / 𝑛 ] 𝑛 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) = if ( 𝑁 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) ) |
| 27 |
9 26
|
eqtrid |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) = if ( 𝑁 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) ) |
| 28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑌 ∈ 𝑉 ) |
| 29 |
5 28
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) |
| 30 |
7
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑁 = 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐶 = 𝑌 ) |
| 31 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ 𝑁 = 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐶 = 𝑌 ) |
| 32 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ 𝑁 = 𝑆 ) → 𝑌 ∈ 𝑉 ) |
| 33 |
31 32
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ 𝑁 = 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐶 ∈ 𝑉 ) |
| 34 |
8
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐷 = 𝑌 ) |
| 35 |
34
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐷 = 𝑌 ) |
| 36 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝑆 < 𝑁 ) → 𝑌 ∈ 𝑉 ) |
| 37 |
35 36
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐷 ∈ 𝑉 ) |
| 38 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → 𝜑 ) |
| 39 |
|
anass |
⊢ ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) ↔ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) |
| 40 |
39
|
bicomi |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ↔ ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) ) |
| 41 |
40
|
bianassc |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) ↔ ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝜑 ) ∧ ¬ 𝑆 < 𝑁 ) ) |
| 42 |
|
an32 |
⊢ ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝜑 ) ↔ ( ( ¬ 𝑁 = 0 ∧ 𝜑 ) ∧ ¬ 𝑁 = 𝑆 ) ) |
| 43 |
|
ancom |
⊢ ( ( ¬ 𝑁 = 0 ∧ 𝜑 ) ↔ ( 𝜑 ∧ ¬ 𝑁 = 0 ) ) |
| 44 |
43
|
anbi1i |
⊢ ( ( ( ¬ 𝑁 = 0 ∧ 𝜑 ) ∧ ¬ 𝑁 = 𝑆 ) ↔ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ) |
| 45 |
42 44
|
bitri |
⊢ ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝜑 ) ↔ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ) |
| 46 |
45
|
anbi1i |
⊢ ( ( ( ( ¬ 𝑁 = 0 ∧ ¬ 𝑁 = 𝑆 ) ∧ 𝜑 ) ∧ ¬ 𝑆 < 𝑁 ) ↔ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) ) |
| 47 |
41 46
|
bitri |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) ↔ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) ) |
| 48 |
|
df-ne |
⊢ ( 𝑁 ≠ 0 ↔ ¬ 𝑁 = 0 ) |
| 49 |
|
elnnne0 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
| 50 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
| 51 |
49 50
|
sylbir |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) → 0 < 𝑁 ) |
| 52 |
51
|
expcom |
⊢ ( 𝑁 ≠ 0 → ( 𝑁 ∈ ℕ0 → 0 < 𝑁 ) ) |
| 53 |
48 52
|
sylbir |
⊢ ( ¬ 𝑁 = 0 → ( 𝑁 ∈ ℕ0 → 0 < 𝑁 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) → ( 𝑁 ∈ ℕ0 → 0 < 𝑁 ) ) |
| 55 |
3 54
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 0 < 𝑁 ) |
| 56 |
47 55
|
sylbir |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → 0 < 𝑁 ) |
| 57 |
3
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑁 ∈ ℝ ) |
| 59 |
2
|
nnred |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑆 ∈ ℝ ) |
| 61 |
57 59
|
lenltd |
⊢ ( 𝜑 → ( 𝑁 ≤ 𝑆 ↔ ¬ 𝑆 < 𝑁 ) ) |
| 62 |
61
|
biimprd |
⊢ ( 𝜑 → ( ¬ 𝑆 < 𝑁 → 𝑁 ≤ 𝑆 ) ) |
| 63 |
62
|
adantld |
⊢ ( 𝜑 → ( ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) → 𝑁 ≤ 𝑆 ) ) |
| 64 |
63
|
adantld |
⊢ ( 𝜑 → ( ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) → 𝑁 ≤ 𝑆 ) ) |
| 65 |
64
|
imp |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑁 ≤ 𝑆 ) |
| 66 |
|
nesym |
⊢ ( 𝑆 ≠ 𝑁 ↔ ¬ 𝑁 = 𝑆 ) |
| 67 |
66
|
biimpri |
⊢ ( ¬ 𝑁 = 𝑆 → 𝑆 ≠ 𝑁 ) |
| 68 |
67
|
adantr |
⊢ ( ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) → 𝑆 ≠ 𝑁 ) |
| 69 |
68
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑆 ≠ 𝑁 ) |
| 70 |
58 60 65 69
|
leneltd |
⊢ ( ( 𝜑 ∧ ( ¬ 𝑁 = 0 ∧ ( ¬ 𝑁 = 𝑆 ∧ ¬ 𝑆 < 𝑁 ) ) ) → 𝑁 < 𝑆 ) |
| 71 |
47 70
|
sylbir |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → 𝑁 < 𝑆 ) |
| 72 |
6
|
eqcomd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐵 = 𝑌 ) |
| 73 |
38 56 71 72
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐵 = 𝑌 ) |
| 74 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → 𝑌 ∈ 𝑉 ) |
| 75 |
73 74
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) ∧ ¬ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ∈ 𝑉 ) |
| 76 |
37 75
|
ifclda |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) → if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ∈ 𝑉 ) |
| 77 |
33 76
|
ifclda |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ∈ 𝑉 ) |
| 78 |
29 77
|
ifclda |
⊢ ( 𝜑 → if ( 𝑁 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) ∈ 𝑉 ) |
| 79 |
27 78
|
eqeltrd |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ∈ 𝑉 ) |
| 80 |
1
|
fvmpts |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ∈ 𝑉 ) → ( 𝐺 ‘ 𝑁 ) = ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ) |
| 81 |
3 79 80
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑁 ) = ⦋ 𝑁 / 𝑛 ⦌ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ) |
| 82 |
5
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = 𝑌 ) |
| 83 |
35 73
|
ifeqda |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) ∧ ¬ 𝑁 = 𝑆 ) → if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) = 𝑌 ) |
| 84 |
31 83
|
ifeqda |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) = 𝑌 ) |
| 85 |
82 84
|
ifeqda |
⊢ ( 𝜑 → if ( 𝑁 = 0 , ⦋ 𝑁 / 𝑛 ⦌ 𝐴 , if ( 𝑁 = 𝑆 , ⦋ 𝑁 / 𝑛 ⦌ 𝐶 , if ( 𝑆 < 𝑁 , ⦋ 𝑁 / 𝑛 ⦌ 𝐷 , ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) = 𝑌 ) |
| 86 |
81 27 85
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑁 ) = 𝑌 ) |