Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptnn04if.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , 𝐴 , if ( 𝑛 = 𝑆 , 𝐶 , if ( 𝑆 < 𝑛 , 𝐷 , 𝐵 ) ) ) ) |
2 |
|
fvmptnn04if.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
3 |
|
fvmptnn04if.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
4 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → 𝑆 ∈ ℕ ) |
5 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → 𝑁 ∈ ℕ0 ) |
6 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) |
7 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) ∧ 𝑁 = 0 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 0 < 𝑁 ) |
9 |
8
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑁 ≠ 0 ) |
10 |
9
|
neneqd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ¬ 𝑁 = 0 ) |
11 |
10
|
pm2.21d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 𝑁 = 0 → ( 𝑁 < 𝑆 → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) |
12 |
11
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 0 < 𝑁 → ( 𝑁 < 𝑆 → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → ( 0 < 𝑁 → ( 𝑁 < 𝑆 → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) ) ) |
14 |
13
|
3imp |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) ∧ 0 < 𝑁 ∧ 𝑁 < 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = ⦋ 𝑁 / 𝑛 ⦌ 𝐵 ) |
15 |
2
|
nnne0d |
⊢ ( 𝜑 → 𝑆 ≠ 0 ) |
16 |
15
|
necomd |
⊢ ( 𝜑 → 0 ≠ 𝑆 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 0 ≠ 𝑆 ) |
18 |
|
neeq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 ≠ 𝑆 ↔ 0 ≠ 𝑆 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 𝑁 ≠ 𝑆 ↔ 0 ≠ 𝑆 ) ) |
20 |
17 19
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → 𝑁 ≠ 𝑆 ) |
21 |
20
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → 𝑁 ≠ 𝑆 ) |
22 |
21
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → ¬ 𝑁 = 𝑆 ) |
23 |
22
|
pm2.21d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → ( 𝑁 = 𝑆 → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = ⦋ 𝑁 / 𝑛 ⦌ 𝐶 ) ) |
24 |
23
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) ∧ 𝑁 = 𝑆 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = ⦋ 𝑁 / 𝑛 ⦌ 𝐶 ) |
25 |
|
nnnn0 |
⊢ ( 𝑆 ∈ ℕ → 𝑆 ∈ ℕ0 ) |
26 |
|
nn0nlt0 |
⊢ ( 𝑆 ∈ ℕ0 → ¬ 𝑆 < 0 ) |
27 |
2 25 26
|
3syl |
⊢ ( 𝜑 → ¬ 𝑆 < 0 ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ¬ 𝑆 < 0 ) |
29 |
|
breq2 |
⊢ ( 𝑁 = 0 → ( 𝑆 < 𝑁 ↔ 𝑆 < 0 ) ) |
30 |
29
|
notbid |
⊢ ( 𝑁 = 0 → ( ¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0 ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( ¬ 𝑆 < 𝑁 ↔ ¬ 𝑆 < 0 ) ) |
32 |
28 31
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ¬ 𝑆 < 𝑁 ) |
33 |
32
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → ¬ 𝑆 < 𝑁 ) |
34 |
33
|
pm2.21d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → ( 𝑆 < 𝑁 → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = ⦋ 𝑁 / 𝑛 ⦌ 𝐷 ) ) |
35 |
34
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) ∧ 𝑆 < 𝑁 ) → ⦋ 𝑁 / 𝑛 ⦌ 𝐴 = ⦋ 𝑁 / 𝑛 ⦌ 𝐷 ) |
36 |
1 4 5 6 7 14 24 35
|
fvmptnn04if |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ∧ ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ∈ 𝑉 ) → ( 𝐺 ‘ 𝑁 ) = ⦋ 𝑁 / 𝑛 ⦌ 𝐴 ) |