| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptnn04if.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  if ( 𝑛  =  0 ,  𝐴 ,  if ( 𝑛  =  𝑆 ,  𝐶 ,  if ( 𝑆  <  𝑛 ,  𝐷 ,  𝐵 ) ) ) ) | 
						
							| 2 |  | fvmptnn04if.s | ⊢ ( 𝜑  →  𝑆  ∈  ℕ ) | 
						
							| 3 |  | fvmptnn04if.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  𝑆  ∈  ℕ ) | 
						
							| 5 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 ) | 
						
							| 7 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 8 |  | nn0ge0 | ⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 ) | 
						
							| 9 | 7 8 | jca | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ∈  ℝ  ∧  0  ≤  𝑁 ) ) | 
						
							| 10 |  | ne0gt0 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  ≤  𝑁 )  →  ( 𝑁  ≠  0  ↔  0  <  𝑁 ) ) | 
						
							| 11 | 3 9 10 | 3syl | ⊢ ( 𝜑  →  ( 𝑁  ≠  0  ↔  0  <  𝑁 ) ) | 
						
							| 12 | 11 | biimprcd | ⊢ ( 0  <  𝑁  →  ( 𝜑  →  𝑁  ≠  0 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  →  ( 𝜑  →  𝑁  ≠  0 ) ) | 
						
							| 14 | 13 | impcom | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 ) )  →  𝑁  ≠  0 ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  𝑁  ≠  0 ) | 
						
							| 16 |  | neneq | ⊢ ( 𝑁  ≠  0  →  ¬  𝑁  =  0 ) | 
						
							| 17 | 16 | pm2.21d | ⊢ ( 𝑁  ≠  0  →  ( 𝑁  =  0  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ) ) | 
						
							| 18 | 15 17 | syl | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  ( 𝑁  =  0  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ) ) | 
						
							| 19 | 18 | imp | ⊢ ( ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  ∧  𝑁  =  0 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐴 ) | 
						
							| 20 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  ∧  0  <  𝑁  ∧  𝑁  <  𝑆 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) | 
						
							| 21 | 3 7 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  <  𝑆 )  →  𝑁  ∈  ℝ ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑁  <  𝑆 )  →  𝑁  <  𝑆 ) | 
						
							| 24 | 22 23 | ltned | ⊢ ( ( 𝜑  ∧  𝑁  <  𝑆 )  →  𝑁  ≠  𝑆 ) | 
						
							| 25 | 24 | neneqd | ⊢ ( ( 𝜑  ∧  𝑁  <  𝑆 )  →  ¬  𝑁  =  𝑆 ) | 
						
							| 26 | 25 | adantrl | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 ) )  →  ¬  𝑁  =  𝑆 ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  ¬  𝑁  =  𝑆 ) | 
						
							| 28 | 27 | pm2.21d | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  ( 𝑁  =  𝑆  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  ∧  𝑁  =  𝑆 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐶 ) | 
						
							| 30 | 2 | nnred | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 31 |  | ltnsym | ⊢ ( ( 𝑁  ∈  ℝ  ∧  𝑆  ∈  ℝ )  →  ( 𝑁  <  𝑆  →  ¬  𝑆  <  𝑁 ) ) | 
						
							| 32 | 21 30 31 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  <  𝑆  →  ¬  𝑆  <  𝑁 ) ) | 
						
							| 33 | 32 | com12 | ⊢ ( 𝑁  <  𝑆  →  ( 𝜑  →  ¬  𝑆  <  𝑁 ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  →  ( 𝜑  →  ¬  𝑆  <  𝑁 ) ) | 
						
							| 35 | 34 | impcom | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 ) )  →  ¬  𝑆  <  𝑁 ) | 
						
							| 36 | 35 | 3adant3 | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  ¬  𝑆  <  𝑁 ) | 
						
							| 37 | 36 | pm2.21d | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  ( 𝑆  <  𝑁  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  ∧  𝑆  <  𝑁 )  →  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐷 ) | 
						
							| 39 | 1 4 5 6 19 20 29 38 | fvmptnn04if | ⊢ ( ( 𝜑  ∧  ( 0  <  𝑁  ∧  𝑁  <  𝑆 )  ∧  ⦋ 𝑁  /  𝑛 ⦌ 𝐵  ∈  𝑉 )  →  ( 𝐺 ‘ 𝑁 )  =  ⦋ 𝑁  /  𝑛 ⦌ 𝐵 ) |