| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptnn04if.g |
|- G = ( n e. NN0 |-> if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) |
| 2 |
|
fvmptnn04if.s |
|- ( ph -> S e. NN ) |
| 3 |
|
fvmptnn04if.n |
|- ( ph -> N e. NN0 ) |
| 4 |
2
|
3ad2ant1 |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> S e. NN ) |
| 5 |
3
|
3ad2ant1 |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> N e. NN0 ) |
| 6 |
|
simp3 |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> [_ N / n ]_ B e. V ) |
| 7 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 8 |
|
nn0ge0 |
|- ( N e. NN0 -> 0 <_ N ) |
| 9 |
7 8
|
jca |
|- ( N e. NN0 -> ( N e. RR /\ 0 <_ N ) ) |
| 10 |
|
ne0gt0 |
|- ( ( N e. RR /\ 0 <_ N ) -> ( N =/= 0 <-> 0 < N ) ) |
| 11 |
3 9 10
|
3syl |
|- ( ph -> ( N =/= 0 <-> 0 < N ) ) |
| 12 |
11
|
biimprcd |
|- ( 0 < N -> ( ph -> N =/= 0 ) ) |
| 13 |
12
|
adantr |
|- ( ( 0 < N /\ N < S ) -> ( ph -> N =/= 0 ) ) |
| 14 |
13
|
impcom |
|- ( ( ph /\ ( 0 < N /\ N < S ) ) -> N =/= 0 ) |
| 15 |
14
|
3adant3 |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> N =/= 0 ) |
| 16 |
|
neneq |
|- ( N =/= 0 -> -. N = 0 ) |
| 17 |
16
|
pm2.21d |
|- ( N =/= 0 -> ( N = 0 -> [_ N / n ]_ B = [_ N / n ]_ A ) ) |
| 18 |
15 17
|
syl |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> ( N = 0 -> [_ N / n ]_ B = [_ N / n ]_ A ) ) |
| 19 |
18
|
imp |
|- ( ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) /\ N = 0 ) -> [_ N / n ]_ B = [_ N / n ]_ A ) |
| 20 |
|
eqidd |
|- ( ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) /\ 0 < N /\ N < S ) -> [_ N / n ]_ B = [_ N / n ]_ B ) |
| 21 |
3 7
|
syl |
|- ( ph -> N e. RR ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ N < S ) -> N e. RR ) |
| 23 |
|
simpr |
|- ( ( ph /\ N < S ) -> N < S ) |
| 24 |
22 23
|
ltned |
|- ( ( ph /\ N < S ) -> N =/= S ) |
| 25 |
24
|
neneqd |
|- ( ( ph /\ N < S ) -> -. N = S ) |
| 26 |
25
|
adantrl |
|- ( ( ph /\ ( 0 < N /\ N < S ) ) -> -. N = S ) |
| 27 |
26
|
3adant3 |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> -. N = S ) |
| 28 |
27
|
pm2.21d |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> ( N = S -> [_ N / n ]_ B = [_ N / n ]_ C ) ) |
| 29 |
28
|
imp |
|- ( ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) /\ N = S ) -> [_ N / n ]_ B = [_ N / n ]_ C ) |
| 30 |
2
|
nnred |
|- ( ph -> S e. RR ) |
| 31 |
|
ltnsym |
|- ( ( N e. RR /\ S e. RR ) -> ( N < S -> -. S < N ) ) |
| 32 |
21 30 31
|
syl2anc |
|- ( ph -> ( N < S -> -. S < N ) ) |
| 33 |
32
|
com12 |
|- ( N < S -> ( ph -> -. S < N ) ) |
| 34 |
33
|
adantl |
|- ( ( 0 < N /\ N < S ) -> ( ph -> -. S < N ) ) |
| 35 |
34
|
impcom |
|- ( ( ph /\ ( 0 < N /\ N < S ) ) -> -. S < N ) |
| 36 |
35
|
3adant3 |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> -. S < N ) |
| 37 |
36
|
pm2.21d |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> ( S < N -> [_ N / n ]_ B = [_ N / n ]_ D ) ) |
| 38 |
37
|
imp |
|- ( ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) /\ S < N ) -> [_ N / n ]_ B = [_ N / n ]_ D ) |
| 39 |
1 4 5 6 19 20 29 38
|
fvmptnn04if |
|- ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> ( G ` N ) = [_ N / n ]_ B ) |