| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptnn04if.g |  |-  G = ( n e. NN0 |-> if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) | 
						
							| 2 |  | fvmptnn04if.s |  |-  ( ph -> S e. NN ) | 
						
							| 3 |  | fvmptnn04if.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 4 | 2 | 3ad2ant1 |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> S e. NN ) | 
						
							| 5 | 3 | 3ad2ant1 |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> N e. NN0 ) | 
						
							| 6 |  | simp3 |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> [_ N / n ]_ B e. V ) | 
						
							| 7 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 8 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 9 | 7 8 | jca |  |-  ( N e. NN0 -> ( N e. RR /\ 0 <_ N ) ) | 
						
							| 10 |  | ne0gt0 |  |-  ( ( N e. RR /\ 0 <_ N ) -> ( N =/= 0 <-> 0 < N ) ) | 
						
							| 11 | 3 9 10 | 3syl |  |-  ( ph -> ( N =/= 0 <-> 0 < N ) ) | 
						
							| 12 | 11 | biimprcd |  |-  ( 0 < N -> ( ph -> N =/= 0 ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( 0 < N /\ N < S ) -> ( ph -> N =/= 0 ) ) | 
						
							| 14 | 13 | impcom |  |-  ( ( ph /\ ( 0 < N /\ N < S ) ) -> N =/= 0 ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> N =/= 0 ) | 
						
							| 16 |  | neneq |  |-  ( N =/= 0 -> -. N = 0 ) | 
						
							| 17 | 16 | pm2.21d |  |-  ( N =/= 0 -> ( N = 0 -> [_ N / n ]_ B = [_ N / n ]_ A ) ) | 
						
							| 18 | 15 17 | syl |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> ( N = 0 -> [_ N / n ]_ B = [_ N / n ]_ A ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) /\ N = 0 ) -> [_ N / n ]_ B = [_ N / n ]_ A ) | 
						
							| 20 |  | eqidd |  |-  ( ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) /\ 0 < N /\ N < S ) -> [_ N / n ]_ B = [_ N / n ]_ B ) | 
						
							| 21 | 3 7 | syl |  |-  ( ph -> N e. RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ N < S ) -> N e. RR ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ N < S ) -> N < S ) | 
						
							| 24 | 22 23 | ltned |  |-  ( ( ph /\ N < S ) -> N =/= S ) | 
						
							| 25 | 24 | neneqd |  |-  ( ( ph /\ N < S ) -> -. N = S ) | 
						
							| 26 | 25 | adantrl |  |-  ( ( ph /\ ( 0 < N /\ N < S ) ) -> -. N = S ) | 
						
							| 27 | 26 | 3adant3 |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> -. N = S ) | 
						
							| 28 | 27 | pm2.21d |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> ( N = S -> [_ N / n ]_ B = [_ N / n ]_ C ) ) | 
						
							| 29 | 28 | imp |  |-  ( ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) /\ N = S ) -> [_ N / n ]_ B = [_ N / n ]_ C ) | 
						
							| 30 | 2 | nnred |  |-  ( ph -> S e. RR ) | 
						
							| 31 |  | ltnsym |  |-  ( ( N e. RR /\ S e. RR ) -> ( N < S -> -. S < N ) ) | 
						
							| 32 | 21 30 31 | syl2anc |  |-  ( ph -> ( N < S -> -. S < N ) ) | 
						
							| 33 | 32 | com12 |  |-  ( N < S -> ( ph -> -. S < N ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( 0 < N /\ N < S ) -> ( ph -> -. S < N ) ) | 
						
							| 35 | 34 | impcom |  |-  ( ( ph /\ ( 0 < N /\ N < S ) ) -> -. S < N ) | 
						
							| 36 | 35 | 3adant3 |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> -. S < N ) | 
						
							| 37 | 36 | pm2.21d |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> ( S < N -> [_ N / n ]_ B = [_ N / n ]_ D ) ) | 
						
							| 38 | 37 | imp |  |-  ( ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) /\ S < N ) -> [_ N / n ]_ B = [_ N / n ]_ D ) | 
						
							| 39 | 1 4 5 6 19 20 29 38 | fvmptnn04if |  |-  ( ( ph /\ ( 0 < N /\ N < S ) /\ [_ N / n ]_ B e. V ) -> ( G ` N ) = [_ N / n ]_ B ) |