| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptnn04if.g |  | 
						
							| 2 |  | fvmptnn04if.s |  | 
						
							| 3 |  | fvmptnn04if.n |  | 
						
							| 4 | 2 | 3ad2ant1 |  | 
						
							| 5 | 3 | 3ad2ant1 |  | 
						
							| 6 |  | simp3 |  | 
						
							| 7 |  | nn0re |  | 
						
							| 8 |  | nn0ge0 |  | 
						
							| 9 | 7 8 | jca |  | 
						
							| 10 |  | ne0gt0 |  | 
						
							| 11 | 3 9 10 | 3syl |  | 
						
							| 12 | 11 | biimprcd |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | impcom |  | 
						
							| 15 | 14 | 3adant3 |  | 
						
							| 16 |  | neneq |  | 
						
							| 17 | 16 | pm2.21d |  | 
						
							| 18 | 15 17 | syl |  | 
						
							| 19 | 18 | imp |  | 
						
							| 20 |  | eqidd |  | 
						
							| 21 | 3 7 | syl |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 22 23 | ltned |  | 
						
							| 25 | 24 | neneqd |  | 
						
							| 26 | 25 | adantrl |  | 
						
							| 27 | 26 | 3adant3 |  | 
						
							| 28 | 27 | pm2.21d |  | 
						
							| 29 | 28 | imp |  | 
						
							| 30 | 2 | nnred |  | 
						
							| 31 |  | ltnsym |  | 
						
							| 32 | 21 30 31 | syl2anc |  | 
						
							| 33 | 32 | com12 |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 | 34 | impcom |  | 
						
							| 36 | 35 | 3adant3 |  | 
						
							| 37 | 36 | pm2.21d |  | 
						
							| 38 | 37 | imp |  | 
						
							| 39 | 1 4 5 6 19 20 29 38 | fvmptnn04if |  |