| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptnn04if.g |
|
| 2 |
|
fvmptnn04if.s |
|
| 3 |
|
fvmptnn04if.n |
|
| 4 |
2
|
3ad2ant1 |
|
| 5 |
3
|
3ad2ant1 |
|
| 6 |
|
simp3 |
|
| 7 |
|
nn0re |
|
| 8 |
|
nn0ge0 |
|
| 9 |
7 8
|
jca |
|
| 10 |
|
ne0gt0 |
|
| 11 |
3 9 10
|
3syl |
|
| 12 |
11
|
biimprcd |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
impcom |
|
| 15 |
14
|
3adant3 |
|
| 16 |
|
neneq |
|
| 17 |
16
|
pm2.21d |
|
| 18 |
15 17
|
syl |
|
| 19 |
18
|
imp |
|
| 20 |
|
eqidd |
|
| 21 |
3 7
|
syl |
|
| 22 |
21
|
adantr |
|
| 23 |
|
simpr |
|
| 24 |
22 23
|
ltned |
|
| 25 |
24
|
neneqd |
|
| 26 |
25
|
adantrl |
|
| 27 |
26
|
3adant3 |
|
| 28 |
27
|
pm2.21d |
|
| 29 |
28
|
imp |
|
| 30 |
2
|
nnred |
|
| 31 |
|
ltnsym |
|
| 32 |
21 30 31
|
syl2anc |
|
| 33 |
32
|
com12 |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
impcom |
|
| 36 |
35
|
3adant3 |
|
| 37 |
36
|
pm2.21d |
|
| 38 |
37
|
imp |
|
| 39 |
1 4 5 6 19 20 29 38
|
fvmptnn04if |
|