Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptnn04if.g |
|
2 |
|
fvmptnn04if.s |
|
3 |
|
fvmptnn04if.n |
|
4 |
2
|
3ad2ant1 |
|
5 |
3
|
3ad2ant1 |
|
6 |
|
simp3 |
|
7 |
|
nn0re |
|
8 |
|
nn0ge0 |
|
9 |
7 8
|
jca |
|
10 |
|
ne0gt0 |
|
11 |
3 9 10
|
3syl |
|
12 |
11
|
biimprcd |
|
13 |
12
|
adantr |
|
14 |
13
|
impcom |
|
15 |
14
|
3adant3 |
|
16 |
|
neneq |
|
17 |
16
|
pm2.21d |
|
18 |
15 17
|
syl |
|
19 |
18
|
imp |
|
20 |
|
eqidd |
|
21 |
3 7
|
syl |
|
22 |
21
|
adantr |
|
23 |
|
simpr |
|
24 |
22 23
|
ltned |
|
25 |
24
|
neneqd |
|
26 |
25
|
adantrl |
|
27 |
26
|
3adant3 |
|
28 |
27
|
pm2.21d |
|
29 |
28
|
imp |
|
30 |
2
|
nnred |
|
31 |
|
ltnsym |
|
32 |
21 30 31
|
syl2anc |
|
33 |
32
|
com12 |
|
34 |
33
|
adantl |
|
35 |
34
|
impcom |
|
36 |
35
|
3adant3 |
|
37 |
36
|
pm2.21d |
|
38 |
37
|
imp |
|
39 |
1 4 5 6 19 20 29 38
|
fvmptnn04if |
|