| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptnn04if.g |  | 
						
							| 2 |  | fvmptnn04if.s |  | 
						
							| 3 |  | fvmptnn04if.n |  | 
						
							| 4 |  | fvmptnn04if.y |  | 
						
							| 5 |  | fvmptnn04if.a |  | 
						
							| 6 |  | fvmptnn04if.b |  | 
						
							| 7 |  | fvmptnn04if.c |  | 
						
							| 8 |  | fvmptnn04if.d |  | 
						
							| 9 |  | csbif |  | 
						
							| 10 |  | eqsbc1 |  | 
						
							| 11 | 3 10 | syl |  | 
						
							| 12 |  | csbif |  | 
						
							| 13 |  | eqsbc1 |  | 
						
							| 14 | 3 13 | syl |  | 
						
							| 15 |  | csbif |  | 
						
							| 16 |  | sbcbr2g |  | 
						
							| 17 | 3 16 | syl |  | 
						
							| 18 |  | csbvarg |  | 
						
							| 19 | 3 18 | syl |  | 
						
							| 20 | 19 | breq2d |  | 
						
							| 21 | 17 20 | bitrd |  | 
						
							| 22 | 21 | ifbid |  | 
						
							| 23 | 15 22 | eqtrid |  | 
						
							| 24 | 14 23 | ifbieq2d |  | 
						
							| 25 | 12 24 | eqtrid |  | 
						
							| 26 | 11 25 | ifbieq2d |  | 
						
							| 27 | 9 26 | eqtrid |  | 
						
							| 28 | 4 | adantr |  | 
						
							| 29 | 5 28 | eqeltrrd |  | 
						
							| 30 | 7 | eqcomd |  | 
						
							| 31 | 30 | adantlr |  | 
						
							| 32 | 4 | ad2antrr |  | 
						
							| 33 | 31 32 | eqeltrd |  | 
						
							| 34 | 8 | eqcomd |  | 
						
							| 35 | 34 | ad4ant14 |  | 
						
							| 36 | 4 | ad3antrrr |  | 
						
							| 37 | 35 36 | eqeltrd |  | 
						
							| 38 |  | simplll |  | 
						
							| 39 |  | anass |  | 
						
							| 40 | 39 | bicomi |  | 
						
							| 41 | 40 | bianassc |  | 
						
							| 42 |  | an32 |  | 
						
							| 43 |  | ancom |  | 
						
							| 44 | 43 | anbi1i |  | 
						
							| 45 | 42 44 | bitri |  | 
						
							| 46 | 45 | anbi1i |  | 
						
							| 47 | 41 46 | bitri |  | 
						
							| 48 |  | df-ne |  | 
						
							| 49 |  | elnnne0 |  | 
						
							| 50 |  | nngt0 |  | 
						
							| 51 | 49 50 | sylbir |  | 
						
							| 52 | 51 | expcom |  | 
						
							| 53 | 48 52 | sylbir |  | 
						
							| 54 | 53 | adantr |  | 
						
							| 55 | 3 54 | mpan9 |  | 
						
							| 56 | 47 55 | sylbir |  | 
						
							| 57 | 3 | nn0red |  | 
						
							| 58 | 57 | adantr |  | 
						
							| 59 | 2 | nnred |  | 
						
							| 60 | 59 | adantr |  | 
						
							| 61 | 57 59 | lenltd |  | 
						
							| 62 | 61 | biimprd |  | 
						
							| 63 | 62 | adantld |  | 
						
							| 64 | 63 | adantld |  | 
						
							| 65 | 64 | imp |  | 
						
							| 66 |  | nesym |  | 
						
							| 67 | 66 | biimpri |  | 
						
							| 68 | 67 | adantr |  | 
						
							| 69 | 68 | ad2antll |  | 
						
							| 70 | 58 60 65 69 | leneltd |  | 
						
							| 71 | 47 70 | sylbir |  | 
						
							| 72 | 6 | eqcomd |  | 
						
							| 73 | 38 56 71 72 | syl3anc |  | 
						
							| 74 | 4 | ad3antrrr |  | 
						
							| 75 | 73 74 | eqeltrd |  | 
						
							| 76 | 37 75 | ifclda |  | 
						
							| 77 | 33 76 | ifclda |  | 
						
							| 78 | 29 77 | ifclda |  | 
						
							| 79 | 27 78 | eqeltrd |  | 
						
							| 80 | 1 | fvmpts |  | 
						
							| 81 | 3 79 80 | syl2anc |  | 
						
							| 82 | 5 | eqcomd |  | 
						
							| 83 | 35 73 | ifeqda |  | 
						
							| 84 | 31 83 | ifeqda |  | 
						
							| 85 | 82 84 | ifeqda |  | 
						
							| 86 | 81 27 85 | 3eqtrd |  |