| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmptnn04if.g |
|- G = ( n e. NN0 |-> if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) |
| 2 |
|
fvmptnn04if.s |
|- ( ph -> S e. NN ) |
| 3 |
|
fvmptnn04if.n |
|- ( ph -> N e. NN0 ) |
| 4 |
|
fvmptnn04if.y |
|- ( ph -> Y e. V ) |
| 5 |
|
fvmptnn04if.a |
|- ( ( ph /\ N = 0 ) -> Y = [_ N / n ]_ A ) |
| 6 |
|
fvmptnn04if.b |
|- ( ( ph /\ 0 < N /\ N < S ) -> Y = [_ N / n ]_ B ) |
| 7 |
|
fvmptnn04if.c |
|- ( ( ph /\ N = S ) -> Y = [_ N / n ]_ C ) |
| 8 |
|
fvmptnn04if.d |
|- ( ( ph /\ S < N ) -> Y = [_ N / n ]_ D ) |
| 9 |
|
csbif |
|- [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) = if ( [. N / n ]. n = 0 , [_ N / n ]_ A , [_ N / n ]_ if ( n = S , C , if ( S < n , D , B ) ) ) |
| 10 |
|
eqsbc1 |
|- ( N e. NN0 -> ( [. N / n ]. n = 0 <-> N = 0 ) ) |
| 11 |
3 10
|
syl |
|- ( ph -> ( [. N / n ]. n = 0 <-> N = 0 ) ) |
| 12 |
|
csbif |
|- [_ N / n ]_ if ( n = S , C , if ( S < n , D , B ) ) = if ( [. N / n ]. n = S , [_ N / n ]_ C , [_ N / n ]_ if ( S < n , D , B ) ) |
| 13 |
|
eqsbc1 |
|- ( N e. NN0 -> ( [. N / n ]. n = S <-> N = S ) ) |
| 14 |
3 13
|
syl |
|- ( ph -> ( [. N / n ]. n = S <-> N = S ) ) |
| 15 |
|
csbif |
|- [_ N / n ]_ if ( S < n , D , B ) = if ( [. N / n ]. S < n , [_ N / n ]_ D , [_ N / n ]_ B ) |
| 16 |
|
sbcbr2g |
|- ( N e. NN0 -> ( [. N / n ]. S < n <-> S < [_ N / n ]_ n ) ) |
| 17 |
3 16
|
syl |
|- ( ph -> ( [. N / n ]. S < n <-> S < [_ N / n ]_ n ) ) |
| 18 |
|
csbvarg |
|- ( N e. NN0 -> [_ N / n ]_ n = N ) |
| 19 |
3 18
|
syl |
|- ( ph -> [_ N / n ]_ n = N ) |
| 20 |
19
|
breq2d |
|- ( ph -> ( S < [_ N / n ]_ n <-> S < N ) ) |
| 21 |
17 20
|
bitrd |
|- ( ph -> ( [. N / n ]. S < n <-> S < N ) ) |
| 22 |
21
|
ifbid |
|- ( ph -> if ( [. N / n ]. S < n , [_ N / n ]_ D , [_ N / n ]_ B ) = if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) |
| 23 |
15 22
|
eqtrid |
|- ( ph -> [_ N / n ]_ if ( S < n , D , B ) = if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) |
| 24 |
14 23
|
ifbieq2d |
|- ( ph -> if ( [. N / n ]. n = S , [_ N / n ]_ C , [_ N / n ]_ if ( S < n , D , B ) ) = if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) |
| 25 |
12 24
|
eqtrid |
|- ( ph -> [_ N / n ]_ if ( n = S , C , if ( S < n , D , B ) ) = if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) |
| 26 |
11 25
|
ifbieq2d |
|- ( ph -> if ( [. N / n ]. n = 0 , [_ N / n ]_ A , [_ N / n ]_ if ( n = S , C , if ( S < n , D , B ) ) ) = if ( N = 0 , [_ N / n ]_ A , if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) ) |
| 27 |
9 26
|
eqtrid |
|- ( ph -> [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) = if ( N = 0 , [_ N / n ]_ A , if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) ) |
| 28 |
4
|
adantr |
|- ( ( ph /\ N = 0 ) -> Y e. V ) |
| 29 |
5 28
|
eqeltrrd |
|- ( ( ph /\ N = 0 ) -> [_ N / n ]_ A e. V ) |
| 30 |
7
|
eqcomd |
|- ( ( ph /\ N = S ) -> [_ N / n ]_ C = Y ) |
| 31 |
30
|
adantlr |
|- ( ( ( ph /\ -. N = 0 ) /\ N = S ) -> [_ N / n ]_ C = Y ) |
| 32 |
4
|
ad2antrr |
|- ( ( ( ph /\ -. N = 0 ) /\ N = S ) -> Y e. V ) |
| 33 |
31 32
|
eqeltrd |
|- ( ( ( ph /\ -. N = 0 ) /\ N = S ) -> [_ N / n ]_ C e. V ) |
| 34 |
8
|
eqcomd |
|- ( ( ph /\ S < N ) -> [_ N / n ]_ D = Y ) |
| 35 |
34
|
ad4ant14 |
|- ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ S < N ) -> [_ N / n ]_ D = Y ) |
| 36 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ S < N ) -> Y e. V ) |
| 37 |
35 36
|
eqeltrd |
|- ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ S < N ) -> [_ N / n ]_ D e. V ) |
| 38 |
|
simplll |
|- ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> ph ) |
| 39 |
|
anass |
|- ( ( ( -. N = 0 /\ -. N = S ) /\ -. S < N ) <-> ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) |
| 40 |
39
|
bicomi |
|- ( ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) <-> ( ( -. N = 0 /\ -. N = S ) /\ -. S < N ) ) |
| 41 |
40
|
bianassc |
|- ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) <-> ( ( ( -. N = 0 /\ -. N = S ) /\ ph ) /\ -. S < N ) ) |
| 42 |
|
an32 |
|- ( ( ( -. N = 0 /\ -. N = S ) /\ ph ) <-> ( ( -. N = 0 /\ ph ) /\ -. N = S ) ) |
| 43 |
|
ancom |
|- ( ( -. N = 0 /\ ph ) <-> ( ph /\ -. N = 0 ) ) |
| 44 |
43
|
anbi1i |
|- ( ( ( -. N = 0 /\ ph ) /\ -. N = S ) <-> ( ( ph /\ -. N = 0 ) /\ -. N = S ) ) |
| 45 |
42 44
|
bitri |
|- ( ( ( -. N = 0 /\ -. N = S ) /\ ph ) <-> ( ( ph /\ -. N = 0 ) /\ -. N = S ) ) |
| 46 |
45
|
anbi1i |
|- ( ( ( ( -. N = 0 /\ -. N = S ) /\ ph ) /\ -. S < N ) <-> ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) ) |
| 47 |
41 46
|
bitri |
|- ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) <-> ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) ) |
| 48 |
|
df-ne |
|- ( N =/= 0 <-> -. N = 0 ) |
| 49 |
|
elnnne0 |
|- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
| 50 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 51 |
49 50
|
sylbir |
|- ( ( N e. NN0 /\ N =/= 0 ) -> 0 < N ) |
| 52 |
51
|
expcom |
|- ( N =/= 0 -> ( N e. NN0 -> 0 < N ) ) |
| 53 |
48 52
|
sylbir |
|- ( -. N = 0 -> ( N e. NN0 -> 0 < N ) ) |
| 54 |
53
|
adantr |
|- ( ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) -> ( N e. NN0 -> 0 < N ) ) |
| 55 |
3 54
|
mpan9 |
|- ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> 0 < N ) |
| 56 |
47 55
|
sylbir |
|- ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> 0 < N ) |
| 57 |
3
|
nn0red |
|- ( ph -> N e. RR ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> N e. RR ) |
| 59 |
2
|
nnred |
|- ( ph -> S e. RR ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> S e. RR ) |
| 61 |
57 59
|
lenltd |
|- ( ph -> ( N <_ S <-> -. S < N ) ) |
| 62 |
61
|
biimprd |
|- ( ph -> ( -. S < N -> N <_ S ) ) |
| 63 |
62
|
adantld |
|- ( ph -> ( ( -. N = S /\ -. S < N ) -> N <_ S ) ) |
| 64 |
63
|
adantld |
|- ( ph -> ( ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) -> N <_ S ) ) |
| 65 |
64
|
imp |
|- ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> N <_ S ) |
| 66 |
|
nesym |
|- ( S =/= N <-> -. N = S ) |
| 67 |
66
|
biimpri |
|- ( -. N = S -> S =/= N ) |
| 68 |
67
|
adantr |
|- ( ( -. N = S /\ -. S < N ) -> S =/= N ) |
| 69 |
68
|
ad2antll |
|- ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> S =/= N ) |
| 70 |
58 60 65 69
|
leneltd |
|- ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> N < S ) |
| 71 |
47 70
|
sylbir |
|- ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> N < S ) |
| 72 |
6
|
eqcomd |
|- ( ( ph /\ 0 < N /\ N < S ) -> [_ N / n ]_ B = Y ) |
| 73 |
38 56 71 72
|
syl3anc |
|- ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> [_ N / n ]_ B = Y ) |
| 74 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> Y e. V ) |
| 75 |
73 74
|
eqeltrd |
|- ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> [_ N / n ]_ B e. V ) |
| 76 |
37 75
|
ifclda |
|- ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) -> if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) e. V ) |
| 77 |
33 76
|
ifclda |
|- ( ( ph /\ -. N = 0 ) -> if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) e. V ) |
| 78 |
29 77
|
ifclda |
|- ( ph -> if ( N = 0 , [_ N / n ]_ A , if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) e. V ) |
| 79 |
27 78
|
eqeltrd |
|- ( ph -> [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) e. V ) |
| 80 |
1
|
fvmpts |
|- ( ( N e. NN0 /\ [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) e. V ) -> ( G ` N ) = [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) |
| 81 |
3 79 80
|
syl2anc |
|- ( ph -> ( G ` N ) = [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) |
| 82 |
5
|
eqcomd |
|- ( ( ph /\ N = 0 ) -> [_ N / n ]_ A = Y ) |
| 83 |
35 73
|
ifeqda |
|- ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) -> if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) = Y ) |
| 84 |
31 83
|
ifeqda |
|- ( ( ph /\ -. N = 0 ) -> if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) = Y ) |
| 85 |
82 84
|
ifeqda |
|- ( ph -> if ( N = 0 , [_ N / n ]_ A , if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) = Y ) |
| 86 |
81 27 85
|
3eqtrd |
|- ( ph -> ( G ` N ) = Y ) |