| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvmptnn04if.g |  |-  G = ( n e. NN0 |-> if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) | 
						
							| 2 |  | fvmptnn04if.s |  |-  ( ph -> S e. NN ) | 
						
							| 3 |  | fvmptnn04if.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 4 |  | fvmptnn04if.y |  |-  ( ph -> Y e. V ) | 
						
							| 5 |  | fvmptnn04if.a |  |-  ( ( ph /\ N = 0 ) -> Y = [_ N / n ]_ A ) | 
						
							| 6 |  | fvmptnn04if.b |  |-  ( ( ph /\ 0 < N /\ N < S ) -> Y = [_ N / n ]_ B ) | 
						
							| 7 |  | fvmptnn04if.c |  |-  ( ( ph /\ N = S ) -> Y = [_ N / n ]_ C ) | 
						
							| 8 |  | fvmptnn04if.d |  |-  ( ( ph /\ S < N ) -> Y = [_ N / n ]_ D ) | 
						
							| 9 |  | csbif |  |-  [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) = if ( [. N / n ]. n = 0 , [_ N / n ]_ A , [_ N / n ]_ if ( n = S , C , if ( S < n , D , B ) ) ) | 
						
							| 10 |  | eqsbc1 |  |-  ( N e. NN0 -> ( [. N / n ]. n = 0 <-> N = 0 ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> ( [. N / n ]. n = 0 <-> N = 0 ) ) | 
						
							| 12 |  | csbif |  |-  [_ N / n ]_ if ( n = S , C , if ( S < n , D , B ) ) = if ( [. N / n ]. n = S , [_ N / n ]_ C , [_ N / n ]_ if ( S < n , D , B ) ) | 
						
							| 13 |  | eqsbc1 |  |-  ( N e. NN0 -> ( [. N / n ]. n = S <-> N = S ) ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> ( [. N / n ]. n = S <-> N = S ) ) | 
						
							| 15 |  | csbif |  |-  [_ N / n ]_ if ( S < n , D , B ) = if ( [. N / n ]. S < n , [_ N / n ]_ D , [_ N / n ]_ B ) | 
						
							| 16 |  | sbcbr2g |  |-  ( N e. NN0 -> ( [. N / n ]. S < n <-> S < [_ N / n ]_ n ) ) | 
						
							| 17 | 3 16 | syl |  |-  ( ph -> ( [. N / n ]. S < n <-> S < [_ N / n ]_ n ) ) | 
						
							| 18 |  | csbvarg |  |-  ( N e. NN0 -> [_ N / n ]_ n = N ) | 
						
							| 19 | 3 18 | syl |  |-  ( ph -> [_ N / n ]_ n = N ) | 
						
							| 20 | 19 | breq2d |  |-  ( ph -> ( S < [_ N / n ]_ n <-> S < N ) ) | 
						
							| 21 | 17 20 | bitrd |  |-  ( ph -> ( [. N / n ]. S < n <-> S < N ) ) | 
						
							| 22 | 21 | ifbid |  |-  ( ph -> if ( [. N / n ]. S < n , [_ N / n ]_ D , [_ N / n ]_ B ) = if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) | 
						
							| 23 | 15 22 | eqtrid |  |-  ( ph -> [_ N / n ]_ if ( S < n , D , B ) = if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) | 
						
							| 24 | 14 23 | ifbieq2d |  |-  ( ph -> if ( [. N / n ]. n = S , [_ N / n ]_ C , [_ N / n ]_ if ( S < n , D , B ) ) = if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) | 
						
							| 25 | 12 24 | eqtrid |  |-  ( ph -> [_ N / n ]_ if ( n = S , C , if ( S < n , D , B ) ) = if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) | 
						
							| 26 | 11 25 | ifbieq2d |  |-  ( ph -> if ( [. N / n ]. n = 0 , [_ N / n ]_ A , [_ N / n ]_ if ( n = S , C , if ( S < n , D , B ) ) ) = if ( N = 0 , [_ N / n ]_ A , if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) ) | 
						
							| 27 | 9 26 | eqtrid |  |-  ( ph -> [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) = if ( N = 0 , [_ N / n ]_ A , if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) ) | 
						
							| 28 | 4 | adantr |  |-  ( ( ph /\ N = 0 ) -> Y e. V ) | 
						
							| 29 | 5 28 | eqeltrrd |  |-  ( ( ph /\ N = 0 ) -> [_ N / n ]_ A e. V ) | 
						
							| 30 | 7 | eqcomd |  |-  ( ( ph /\ N = S ) -> [_ N / n ]_ C = Y ) | 
						
							| 31 | 30 | adantlr |  |-  ( ( ( ph /\ -. N = 0 ) /\ N = S ) -> [_ N / n ]_ C = Y ) | 
						
							| 32 | 4 | ad2antrr |  |-  ( ( ( ph /\ -. N = 0 ) /\ N = S ) -> Y e. V ) | 
						
							| 33 | 31 32 | eqeltrd |  |-  ( ( ( ph /\ -. N = 0 ) /\ N = S ) -> [_ N / n ]_ C e. V ) | 
						
							| 34 | 8 | eqcomd |  |-  ( ( ph /\ S < N ) -> [_ N / n ]_ D = Y ) | 
						
							| 35 | 34 | ad4ant14 |  |-  ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ S < N ) -> [_ N / n ]_ D = Y ) | 
						
							| 36 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ S < N ) -> Y e. V ) | 
						
							| 37 | 35 36 | eqeltrd |  |-  ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ S < N ) -> [_ N / n ]_ D e. V ) | 
						
							| 38 |  | simplll |  |-  ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> ph ) | 
						
							| 39 |  | anass |  |-  ( ( ( -. N = 0 /\ -. N = S ) /\ -. S < N ) <-> ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) | 
						
							| 40 | 39 | bicomi |  |-  ( ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) <-> ( ( -. N = 0 /\ -. N = S ) /\ -. S < N ) ) | 
						
							| 41 | 40 | bianassc |  |-  ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) <-> ( ( ( -. N = 0 /\ -. N = S ) /\ ph ) /\ -. S < N ) ) | 
						
							| 42 |  | an32 |  |-  ( ( ( -. N = 0 /\ -. N = S ) /\ ph ) <-> ( ( -. N = 0 /\ ph ) /\ -. N = S ) ) | 
						
							| 43 |  | ancom |  |-  ( ( -. N = 0 /\ ph ) <-> ( ph /\ -. N = 0 ) ) | 
						
							| 44 | 43 | anbi1i |  |-  ( ( ( -. N = 0 /\ ph ) /\ -. N = S ) <-> ( ( ph /\ -. N = 0 ) /\ -. N = S ) ) | 
						
							| 45 | 42 44 | bitri |  |-  ( ( ( -. N = 0 /\ -. N = S ) /\ ph ) <-> ( ( ph /\ -. N = 0 ) /\ -. N = S ) ) | 
						
							| 46 | 45 | anbi1i |  |-  ( ( ( ( -. N = 0 /\ -. N = S ) /\ ph ) /\ -. S < N ) <-> ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) ) | 
						
							| 47 | 41 46 | bitri |  |-  ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) <-> ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) ) | 
						
							| 48 |  | df-ne |  |-  ( N =/= 0 <-> -. N = 0 ) | 
						
							| 49 |  | elnnne0 |  |-  ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) | 
						
							| 50 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 51 | 49 50 | sylbir |  |-  ( ( N e. NN0 /\ N =/= 0 ) -> 0 < N ) | 
						
							| 52 | 51 | expcom |  |-  ( N =/= 0 -> ( N e. NN0 -> 0 < N ) ) | 
						
							| 53 | 48 52 | sylbir |  |-  ( -. N = 0 -> ( N e. NN0 -> 0 < N ) ) | 
						
							| 54 | 53 | adantr |  |-  ( ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) -> ( N e. NN0 -> 0 < N ) ) | 
						
							| 55 | 3 54 | mpan9 |  |-  ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> 0 < N ) | 
						
							| 56 | 47 55 | sylbir |  |-  ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> 0 < N ) | 
						
							| 57 | 3 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> N e. RR ) | 
						
							| 59 | 2 | nnred |  |-  ( ph -> S e. RR ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> S e. RR ) | 
						
							| 61 | 57 59 | lenltd |  |-  ( ph -> ( N <_ S <-> -. S < N ) ) | 
						
							| 62 | 61 | biimprd |  |-  ( ph -> ( -. S < N -> N <_ S ) ) | 
						
							| 63 | 62 | adantld |  |-  ( ph -> ( ( -. N = S /\ -. S < N ) -> N <_ S ) ) | 
						
							| 64 | 63 | adantld |  |-  ( ph -> ( ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) -> N <_ S ) ) | 
						
							| 65 | 64 | imp |  |-  ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> N <_ S ) | 
						
							| 66 |  | nesym |  |-  ( S =/= N <-> -. N = S ) | 
						
							| 67 | 66 | biimpri |  |-  ( -. N = S -> S =/= N ) | 
						
							| 68 | 67 | adantr |  |-  ( ( -. N = S /\ -. S < N ) -> S =/= N ) | 
						
							| 69 | 68 | ad2antll |  |-  ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> S =/= N ) | 
						
							| 70 | 58 60 65 69 | leneltd |  |-  ( ( ph /\ ( -. N = 0 /\ ( -. N = S /\ -. S < N ) ) ) -> N < S ) | 
						
							| 71 | 47 70 | sylbir |  |-  ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> N < S ) | 
						
							| 72 | 6 | eqcomd |  |-  ( ( ph /\ 0 < N /\ N < S ) -> [_ N / n ]_ B = Y ) | 
						
							| 73 | 38 56 71 72 | syl3anc |  |-  ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> [_ N / n ]_ B = Y ) | 
						
							| 74 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> Y e. V ) | 
						
							| 75 | 73 74 | eqeltrd |  |-  ( ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) /\ -. S < N ) -> [_ N / n ]_ B e. V ) | 
						
							| 76 | 37 75 | ifclda |  |-  ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) -> if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) e. V ) | 
						
							| 77 | 33 76 | ifclda |  |-  ( ( ph /\ -. N = 0 ) -> if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) e. V ) | 
						
							| 78 | 29 77 | ifclda |  |-  ( ph -> if ( N = 0 , [_ N / n ]_ A , if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) e. V ) | 
						
							| 79 | 27 78 | eqeltrd |  |-  ( ph -> [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) e. V ) | 
						
							| 80 | 1 | fvmpts |  |-  ( ( N e. NN0 /\ [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) e. V ) -> ( G ` N ) = [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) | 
						
							| 81 | 3 79 80 | syl2anc |  |-  ( ph -> ( G ` N ) = [_ N / n ]_ if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) | 
						
							| 82 | 5 | eqcomd |  |-  ( ( ph /\ N = 0 ) -> [_ N / n ]_ A = Y ) | 
						
							| 83 | 35 73 | ifeqda |  |-  ( ( ( ph /\ -. N = 0 ) /\ -. N = S ) -> if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) = Y ) | 
						
							| 84 | 31 83 | ifeqda |  |-  ( ( ph /\ -. N = 0 ) -> if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) = Y ) | 
						
							| 85 | 82 84 | ifeqda |  |-  ( ph -> if ( N = 0 , [_ N / n ]_ A , if ( N = S , [_ N / n ]_ C , if ( S < N , [_ N / n ]_ D , [_ N / n ]_ B ) ) ) = Y ) | 
						
							| 86 | 81 27 85 | 3eqtrd |  |-  ( ph -> ( G ` N ) = Y ) |