Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptnn04if.g |
|- G = ( n e. NN0 |-> if ( n = 0 , A , if ( n = S , C , if ( S < n , D , B ) ) ) ) |
2 |
|
fvmptnn04if.s |
|- ( ph -> S e. NN ) |
3 |
|
fvmptnn04if.n |
|- ( ph -> N e. NN0 ) |
4 |
2
|
3ad2ant1 |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> S e. NN ) |
5 |
3
|
3ad2ant1 |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> N e. NN0 ) |
6 |
|
simp3 |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> [_ N / n ]_ A e. V ) |
7 |
|
eqidd |
|- ( ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) /\ N = 0 ) -> [_ N / n ]_ A = [_ N / n ]_ A ) |
8 |
|
simpr |
|- ( ( ph /\ 0 < N ) -> 0 < N ) |
9 |
8
|
gt0ne0d |
|- ( ( ph /\ 0 < N ) -> N =/= 0 ) |
10 |
9
|
neneqd |
|- ( ( ph /\ 0 < N ) -> -. N = 0 ) |
11 |
10
|
pm2.21d |
|- ( ( ph /\ 0 < N ) -> ( N = 0 -> ( N < S -> [_ N / n ]_ A = [_ N / n ]_ B ) ) ) |
12 |
11
|
impancom |
|- ( ( ph /\ N = 0 ) -> ( 0 < N -> ( N < S -> [_ N / n ]_ A = [_ N / n ]_ B ) ) ) |
13 |
12
|
3adant3 |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> ( 0 < N -> ( N < S -> [_ N / n ]_ A = [_ N / n ]_ B ) ) ) |
14 |
13
|
3imp |
|- ( ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) /\ 0 < N /\ N < S ) -> [_ N / n ]_ A = [_ N / n ]_ B ) |
15 |
2
|
nnne0d |
|- ( ph -> S =/= 0 ) |
16 |
15
|
necomd |
|- ( ph -> 0 =/= S ) |
17 |
16
|
adantr |
|- ( ( ph /\ N = 0 ) -> 0 =/= S ) |
18 |
|
neeq1 |
|- ( N = 0 -> ( N =/= S <-> 0 =/= S ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ N = 0 ) -> ( N =/= S <-> 0 =/= S ) ) |
20 |
17 19
|
mpbird |
|- ( ( ph /\ N = 0 ) -> N =/= S ) |
21 |
20
|
3adant3 |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> N =/= S ) |
22 |
21
|
neneqd |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> -. N = S ) |
23 |
22
|
pm2.21d |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> ( N = S -> [_ N / n ]_ A = [_ N / n ]_ C ) ) |
24 |
23
|
imp |
|- ( ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) /\ N = S ) -> [_ N / n ]_ A = [_ N / n ]_ C ) |
25 |
|
nnnn0 |
|- ( S e. NN -> S e. NN0 ) |
26 |
|
nn0nlt0 |
|- ( S e. NN0 -> -. S < 0 ) |
27 |
2 25 26
|
3syl |
|- ( ph -> -. S < 0 ) |
28 |
27
|
adantr |
|- ( ( ph /\ N = 0 ) -> -. S < 0 ) |
29 |
|
breq2 |
|- ( N = 0 -> ( S < N <-> S < 0 ) ) |
30 |
29
|
notbid |
|- ( N = 0 -> ( -. S < N <-> -. S < 0 ) ) |
31 |
30
|
adantl |
|- ( ( ph /\ N = 0 ) -> ( -. S < N <-> -. S < 0 ) ) |
32 |
28 31
|
mpbird |
|- ( ( ph /\ N = 0 ) -> -. S < N ) |
33 |
32
|
3adant3 |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> -. S < N ) |
34 |
33
|
pm2.21d |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> ( S < N -> [_ N / n ]_ A = [_ N / n ]_ D ) ) |
35 |
34
|
imp |
|- ( ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) /\ S < N ) -> [_ N / n ]_ A = [_ N / n ]_ D ) |
36 |
1 4 5 6 7 14 24 35
|
fvmptnn04if |
|- ( ( ph /\ N = 0 /\ [_ N / n ]_ A e. V ) -> ( G ` N ) = [_ N / n ]_ A ) |