| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvprmselelfz.f |  |-  F = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) | 
						
							| 2 |  | eleq1 |  |-  ( m = X -> ( m e. Prime <-> X e. Prime ) ) | 
						
							| 3 |  | id |  |-  ( m = X -> m = X ) | 
						
							| 4 | 2 3 | ifbieq1d |  |-  ( m = X -> if ( m e. Prime , m , 1 ) = if ( X e. Prime , X , 1 ) ) | 
						
							| 5 |  | iftrue |  |-  ( X e. Prime -> if ( X e. Prime , X , 1 ) = X ) | 
						
							| 6 | 5 | adantr |  |-  ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> if ( X e. Prime , X , 1 ) = X ) | 
						
							| 7 | 4 6 | sylan9eqr |  |-  ( ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) | 
						
							| 8 |  | elfznn |  |-  ( X e. ( 1 ... N ) -> X e. NN ) | 
						
							| 9 | 8 | adantl |  |-  ( ( N e. NN /\ X e. ( 1 ... N ) ) -> X e. NN ) | 
						
							| 10 | 9 | adantl |  |-  ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> X e. NN ) | 
						
							| 11 | 1 7 10 10 | fvmptd2 |  |-  ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) = X ) | 
						
							| 12 |  | simprr |  |-  ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> X e. ( 1 ... N ) ) | 
						
							| 13 | 11 12 | eqeltrd |  |-  ( ( X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) e. ( 1 ... N ) ) | 
						
							| 14 |  | iffalse |  |-  ( -. X e. Prime -> if ( X e. Prime , X , 1 ) = 1 ) | 
						
							| 15 | 14 | adantr |  |-  ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> if ( X e. Prime , X , 1 ) = 1 ) | 
						
							| 16 | 4 15 | sylan9eqr |  |-  ( ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) | 
						
							| 17 | 9 | adantl |  |-  ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> X e. NN ) | 
						
							| 18 |  | 1nn |  |-  1 e. NN | 
						
							| 19 | 18 | a1i |  |-  ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> 1 e. NN ) | 
						
							| 20 | 1 16 17 19 | fvmptd2 |  |-  ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) = 1 ) | 
						
							| 21 |  | elnnuz |  |-  ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) | 
						
							| 22 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 23 | 21 22 | sylbi |  |-  ( N e. NN -> 1 e. ( 1 ... N ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( N e. NN /\ X e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> 1 e. ( 1 ... N ) ) | 
						
							| 26 | 20 25 | eqeltrd |  |-  ( ( -. X e. Prime /\ ( N e. NN /\ X e. ( 1 ... N ) ) ) -> ( F ` X ) e. ( 1 ... N ) ) | 
						
							| 27 | 13 26 | pm2.61ian |  |-  ( ( N e. NN /\ X e. ( 1 ... N ) ) -> ( F ` X ) e. ( 1 ... N ) ) |