| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvprmselelfz.f |  |-  F = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) | 
						
							| 2 |  | eleq1 |  |-  ( m = X -> ( m e. Prime <-> X e. Prime ) ) | 
						
							| 3 |  | id |  |-  ( m = X -> m = X ) | 
						
							| 4 | 2 3 | ifbieq1d |  |-  ( m = X -> if ( m e. Prime , m , 1 ) = if ( X e. Prime , X , 1 ) ) | 
						
							| 5 |  | iftrue |  |-  ( X e. Prime -> if ( X e. Prime , X , 1 ) = X ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = X ) | 
						
							| 7 | 4 6 | sylan9eqr |  |-  ( ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) | 
						
							| 8 |  | elfznn |  |-  ( X e. ( 1 ... N ) -> X e. NN ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> X e. NN ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) | 
						
							| 11 | 1 7 10 10 | fvmptd2 |  |-  ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = X ) | 
						
							| 12 |  | eleq1 |  |-  ( m = Y -> ( m e. Prime <-> Y e. Prime ) ) | 
						
							| 13 |  | id |  |-  ( m = Y -> m = Y ) | 
						
							| 14 | 12 13 | ifbieq1d |  |-  ( m = Y -> if ( m e. Prime , m , 1 ) = if ( Y e. Prime , Y , 1 ) ) | 
						
							| 15 |  | iftrue |  |-  ( Y e. Prime -> if ( Y e. Prime , Y , 1 ) = Y ) | 
						
							| 16 | 15 | ad2antlr |  |-  ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = Y ) | 
						
							| 17 | 14 16 | sylan9eqr |  |-  ( ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = Y ) | 
						
							| 18 |  | elfznn |  |-  ( Y e. ( 1 ... N ) -> Y e. NN ) | 
						
							| 19 | 18 | 3ad2ant2 |  |-  ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> Y e. NN ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) | 
						
							| 21 | 1 17 20 20 | fvmptd2 |  |-  ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = Y ) | 
						
							| 22 | 11 21 | oveq12d |  |-  ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( X gcd Y ) ) | 
						
							| 23 |  | prmrp |  |-  ( ( X e. Prime /\ Y e. Prime ) -> ( ( X gcd Y ) = 1 <-> X =/= Y ) ) | 
						
							| 24 | 23 | biimprcd |  |-  ( X =/= Y -> ( ( X e. Prime /\ Y e. Prime ) -> ( X gcd Y ) = 1 ) ) | 
						
							| 25 | 24 | 3ad2ant3 |  |-  ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( X e. Prime /\ Y e. Prime ) -> ( X gcd Y ) = 1 ) ) | 
						
							| 26 | 25 | impcom |  |-  ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( X gcd Y ) = 1 ) | 
						
							| 27 | 22 26 | eqtrd |  |-  ( ( ( X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) | 
						
							| 28 | 27 | ex |  |-  ( ( X e. Prime /\ Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) | 
						
							| 29 | 5 | ad2antrr |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = X ) | 
						
							| 30 | 4 29 | sylan9eqr |  |-  ( ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = X ) | 
						
							| 31 | 9 | adantl |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) | 
						
							| 32 | 1 30 31 31 | fvmptd2 |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = X ) | 
						
							| 33 |  | iffalse |  |-  ( -. Y e. Prime -> if ( Y e. Prime , Y , 1 ) = 1 ) | 
						
							| 34 | 33 | ad2antlr |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = 1 ) | 
						
							| 35 | 14 34 | sylan9eqr |  |-  ( ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = 1 ) | 
						
							| 36 | 19 | adantl |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) | 
						
							| 37 |  | 1nn |  |-  1 e. NN | 
						
							| 38 | 37 | a1i |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) | 
						
							| 39 | 1 35 36 38 | fvmptd2 |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = 1 ) | 
						
							| 40 | 32 39 | oveq12d |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( X gcd 1 ) ) | 
						
							| 41 |  | prmz |  |-  ( X e. Prime -> X e. ZZ ) | 
						
							| 42 |  | gcd1 |  |-  ( X e. ZZ -> ( X gcd 1 ) = 1 ) | 
						
							| 43 | 41 42 | syl |  |-  ( X e. Prime -> ( X gcd 1 ) = 1 ) | 
						
							| 44 | 43 | ad2antrr |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( X gcd 1 ) = 1 ) | 
						
							| 45 | 40 44 | eqtrd |  |-  ( ( ( X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) | 
						
							| 46 | 45 | ex |  |-  ( ( X e. Prime /\ -. Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) | 
						
							| 47 |  | iffalse |  |-  ( -. X e. Prime -> if ( X e. Prime , X , 1 ) = 1 ) | 
						
							| 48 | 47 | ad2antrr |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = 1 ) | 
						
							| 49 | 4 48 | sylan9eqr |  |-  ( ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) | 
						
							| 50 | 9 | adantl |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) | 
						
							| 51 | 37 | a1i |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) | 
						
							| 52 | 1 49 50 51 | fvmptd2 |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = 1 ) | 
						
							| 53 | 15 | ad2antlr |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = Y ) | 
						
							| 54 | 14 53 | sylan9eqr |  |-  ( ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = Y ) | 
						
							| 55 | 19 | adantl |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) | 
						
							| 56 | 1 54 55 55 | fvmptd2 |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = Y ) | 
						
							| 57 | 52 56 | oveq12d |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( 1 gcd Y ) ) | 
						
							| 58 |  | prmz |  |-  ( Y e. Prime -> Y e. ZZ ) | 
						
							| 59 |  | 1gcd |  |-  ( Y e. ZZ -> ( 1 gcd Y ) = 1 ) | 
						
							| 60 | 58 59 | syl |  |-  ( Y e. Prime -> ( 1 gcd Y ) = 1 ) | 
						
							| 61 | 60 | ad2antlr |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( 1 gcd Y ) = 1 ) | 
						
							| 62 | 57 61 | eqtrd |  |-  ( ( ( -. X e. Prime /\ Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) | 
						
							| 63 | 62 | ex |  |-  ( ( -. X e. Prime /\ Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) | 
						
							| 64 | 47 | ad2antrr |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( X e. Prime , X , 1 ) = 1 ) | 
						
							| 65 | 4 64 | sylan9eqr |  |-  ( ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = X ) -> if ( m e. Prime , m , 1 ) = 1 ) | 
						
							| 66 | 9 | adantl |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> X e. NN ) | 
						
							| 67 | 37 | a1i |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> 1 e. NN ) | 
						
							| 68 | 1 65 66 67 | fvmptd2 |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` X ) = 1 ) | 
						
							| 69 | 33 | ad2antlr |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> if ( Y e. Prime , Y , 1 ) = 1 ) | 
						
							| 70 | 14 69 | sylan9eqr |  |-  ( ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) /\ m = Y ) -> if ( m e. Prime , m , 1 ) = 1 ) | 
						
							| 71 | 19 | adantl |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> Y e. NN ) | 
						
							| 72 | 1 70 71 67 | fvmptd2 |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( F ` Y ) = 1 ) | 
						
							| 73 | 68 72 | oveq12d |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = ( 1 gcd 1 ) ) | 
						
							| 74 |  | 1z |  |-  1 e. ZZ | 
						
							| 75 |  | 1gcd |  |-  ( 1 e. ZZ -> ( 1 gcd 1 ) = 1 ) | 
						
							| 76 | 74 75 | mp1i |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( 1 gcd 1 ) = 1 ) | 
						
							| 77 | 73 76 | eqtrd |  |-  ( ( ( -. X e. Prime /\ -. Y e. Prime ) /\ ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) | 
						
							| 78 | 77 | ex |  |-  ( ( -. X e. Prime /\ -. Y e. Prime ) -> ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) ) | 
						
							| 79 | 28 46 63 78 | 4cases |  |-  ( ( X e. ( 1 ... N ) /\ Y e. ( 1 ... N ) /\ X =/= Y ) -> ( ( F ` X ) gcd ( F ` Y ) ) = 1 ) |