| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gblacfnacd.1 |  |-  ( ph -> F Fn _V ) | 
						
							| 2 |  | gblacfnacd.2 |  |-  ( ph -> A. z ( z =/= (/) -> ( F ` z ) e. z ) ) | 
						
							| 3 |  | fnfun |  |-  ( F Fn _V -> Fun F ) | 
						
							| 4 |  | resfunexg |  |-  ( ( Fun F /\ x e. _V ) -> ( F |` x ) e. _V ) | 
						
							| 5 | 4 | elvd |  |-  ( Fun F -> ( F |` x ) e. _V ) | 
						
							| 6 | 1 3 5 | 3syl |  |-  ( ph -> ( F |` x ) e. _V ) | 
						
							| 7 |  | ssv |  |-  x C_ _V | 
						
							| 8 |  | fnssres |  |-  ( ( F Fn _V /\ x C_ _V ) -> ( F |` x ) Fn x ) | 
						
							| 9 | 1 7 8 | sylancl |  |-  ( ph -> ( F |` x ) Fn x ) | 
						
							| 10 | 2 | 19.21bi |  |-  ( ph -> ( z =/= (/) -> ( F ` z ) e. z ) ) | 
						
							| 11 |  | fvres |  |-  ( z e. x -> ( ( F |` x ) ` z ) = ( F ` z ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( z e. x -> ( ( ( F |` x ) ` z ) e. z <-> ( F ` z ) e. z ) ) | 
						
							| 13 | 12 | imbi2d |  |-  ( z e. x -> ( ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) <-> ( z =/= (/) -> ( F ` z ) e. z ) ) ) | 
						
							| 14 | 10 13 | syl5ibrcom |  |-  ( ph -> ( z e. x -> ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) | 
						
							| 15 | 14 | ralrimiv |  |-  ( ph -> A. z e. x ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) | 
						
							| 16 | 9 15 | jca |  |-  ( ph -> ( ( F |` x ) Fn x /\ A. z e. x ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) | 
						
							| 17 |  | fneq1 |  |-  ( f = ( F |` x ) -> ( f Fn x <-> ( F |` x ) Fn x ) ) | 
						
							| 18 |  | fveq1 |  |-  ( f = ( F |` x ) -> ( f ` z ) = ( ( F |` x ) ` z ) ) | 
						
							| 19 | 18 | eleq1d |  |-  ( f = ( F |` x ) -> ( ( f ` z ) e. z <-> ( ( F |` x ) ` z ) e. z ) ) | 
						
							| 20 | 19 | imbi2d |  |-  ( f = ( F |` x ) -> ( ( z =/= (/) -> ( f ` z ) e. z ) <-> ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) | 
						
							| 21 | 20 | ralbidv |  |-  ( f = ( F |` x ) -> ( A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) <-> A. z e. x ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) | 
						
							| 22 | 17 21 | anbi12d |  |-  ( f = ( F |` x ) -> ( ( f Fn x /\ A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) <-> ( ( F |` x ) Fn x /\ A. z e. x ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) ) | 
						
							| 23 | 6 16 22 | spcedv |  |-  ( ph -> E. f ( f Fn x /\ A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) ) | 
						
							| 24 | 23 | alrimiv |  |-  ( ph -> A. x E. f ( f Fn x /\ A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) ) |