Step |
Hyp |
Ref |
Expression |
1 |
|
gblacfnacd.1 |
|- ( ph -> F Fn _V ) |
2 |
|
gblacfnacd.2 |
|- ( ph -> A. z ( z =/= (/) -> ( F ` z ) e. z ) ) |
3 |
|
fnfun |
|- ( F Fn _V -> Fun F ) |
4 |
|
resfunexg |
|- ( ( Fun F /\ x e. _V ) -> ( F |` x ) e. _V ) |
5 |
4
|
elvd |
|- ( Fun F -> ( F |` x ) e. _V ) |
6 |
1 3 5
|
3syl |
|- ( ph -> ( F |` x ) e. _V ) |
7 |
|
ssv |
|- x C_ _V |
8 |
|
fnssres |
|- ( ( F Fn _V /\ x C_ _V ) -> ( F |` x ) Fn x ) |
9 |
1 7 8
|
sylancl |
|- ( ph -> ( F |` x ) Fn x ) |
10 |
2
|
19.21bi |
|- ( ph -> ( z =/= (/) -> ( F ` z ) e. z ) ) |
11 |
|
fvres |
|- ( z e. x -> ( ( F |` x ) ` z ) = ( F ` z ) ) |
12 |
11
|
eleq1d |
|- ( z e. x -> ( ( ( F |` x ) ` z ) e. z <-> ( F ` z ) e. z ) ) |
13 |
12
|
imbi2d |
|- ( z e. x -> ( ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) <-> ( z =/= (/) -> ( F ` z ) e. z ) ) ) |
14 |
10 13
|
syl5ibrcom |
|- ( ph -> ( z e. x -> ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) |
15 |
14
|
ralrimiv |
|- ( ph -> A. z e. x ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) |
16 |
9 15
|
jca |
|- ( ph -> ( ( F |` x ) Fn x /\ A. z e. x ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) |
17 |
|
fneq1 |
|- ( f = ( F |` x ) -> ( f Fn x <-> ( F |` x ) Fn x ) ) |
18 |
|
fveq1 |
|- ( f = ( F |` x ) -> ( f ` z ) = ( ( F |` x ) ` z ) ) |
19 |
18
|
eleq1d |
|- ( f = ( F |` x ) -> ( ( f ` z ) e. z <-> ( ( F |` x ) ` z ) e. z ) ) |
20 |
19
|
imbi2d |
|- ( f = ( F |` x ) -> ( ( z =/= (/) -> ( f ` z ) e. z ) <-> ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) |
21 |
20
|
ralbidv |
|- ( f = ( F |` x ) -> ( A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) <-> A. z e. x ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) |
22 |
17 21
|
anbi12d |
|- ( f = ( F |` x ) -> ( ( f Fn x /\ A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) <-> ( ( F |` x ) Fn x /\ A. z e. x ( z =/= (/) -> ( ( F |` x ) ` z ) e. z ) ) ) ) |
23 |
6 16 22
|
spcedv |
|- ( ph -> E. f ( f Fn x /\ A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
24 |
23
|
alrimiv |
|- ( ph -> A. x E. f ( f Fn x /\ A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) ) |