Metamath Proof Explorer


Theorem gblacfnacd

Description: If F is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 ) holds. Note that F must be a proper class by fndmexb . This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024)

Ref Expression
Hypotheses gblacfnacd.1 ( 𝜑𝐹 Fn V )
gblacfnacd.2 ( 𝜑 → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐹𝑧 ) ∈ 𝑧 ) )
Assertion gblacfnacd ( 𝜑 → ∀ 𝑥𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 gblacfnacd.1 ( 𝜑𝐹 Fn V )
2 gblacfnacd.2 ( 𝜑 → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐹𝑧 ) ∈ 𝑧 ) )
3 fnfun ( 𝐹 Fn V → Fun 𝐹 )
4 resfunexg ( ( Fun 𝐹𝑥 ∈ V ) → ( 𝐹𝑥 ) ∈ V )
5 4 elvd ( Fun 𝐹 → ( 𝐹𝑥 ) ∈ V )
6 1 3 5 3syl ( 𝜑 → ( 𝐹𝑥 ) ∈ V )
7 ssv 𝑥 ⊆ V
8 fnssres ( ( 𝐹 Fn V ∧ 𝑥 ⊆ V ) → ( 𝐹𝑥 ) Fn 𝑥 )
9 1 7 8 sylancl ( 𝜑 → ( 𝐹𝑥 ) Fn 𝑥 )
10 2 19.21bi ( 𝜑 → ( 𝑧 ≠ ∅ → ( 𝐹𝑧 ) ∈ 𝑧 ) )
11 fvres ( 𝑧𝑥 → ( ( 𝐹𝑥 ) ‘ 𝑧 ) = ( 𝐹𝑧 ) )
12 11 eleq1d ( 𝑧𝑥 → ( ( ( 𝐹𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐹𝑧 ) ∈ 𝑧 ) )
13 12 imbi2d ( 𝑧𝑥 → ( ( 𝑧 ≠ ∅ → ( ( 𝐹𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( 𝐹𝑧 ) ∈ 𝑧 ) ) )
14 10 13 syl5ibrcom ( 𝜑 → ( 𝑧𝑥 → ( 𝑧 ≠ ∅ → ( ( 𝐹𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) )
15 14 ralrimiv ( 𝜑 → ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ → ( ( 𝐹𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) )
16 9 15 jca ( 𝜑 → ( ( 𝐹𝑥 ) Fn 𝑥 ∧ ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ → ( ( 𝐹𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) )
17 fneq1 ( 𝑓 = ( 𝐹𝑥 ) → ( 𝑓 Fn 𝑥 ↔ ( 𝐹𝑥 ) Fn 𝑥 ) )
18 fveq1 ( 𝑓 = ( 𝐹𝑥 ) → ( 𝑓𝑧 ) = ( ( 𝐹𝑥 ) ‘ 𝑧 ) )
19 18 eleq1d ( 𝑓 = ( 𝐹𝑥 ) → ( ( 𝑓𝑧 ) ∈ 𝑧 ↔ ( ( 𝐹𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) )
20 19 imbi2d ( 𝑓 = ( 𝐹𝑥 ) → ( ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( ( 𝐹𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) )
21 20 ralbidv ( 𝑓 = ( 𝐹𝑥 ) → ( ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ → ( ( 𝐹𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) )
22 17 21 anbi12d ( 𝑓 = ( 𝐹𝑥 ) → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) ) ↔ ( ( 𝐹𝑥 ) Fn 𝑥 ∧ ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ → ( ( 𝐹𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) )
23 6 16 22 spcedv ( 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) ) )
24 23 alrimiv ( 𝜑 → ∀ 𝑥𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ → ( 𝑓𝑧 ) ∈ 𝑧 ) ) )