| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gblacfnacd.1 | ⊢ ( 𝜑  →  𝐹  Fn  V ) | 
						
							| 2 |  | gblacfnacd.2 | ⊢ ( 𝜑  →  ∀ 𝑧 ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 3 |  | fnfun | ⊢ ( 𝐹  Fn  V  →  Fun  𝐹 ) | 
						
							| 4 |  | resfunexg | ⊢ ( ( Fun  𝐹  ∧  𝑥  ∈  V )  →  ( 𝐹  ↾  𝑥 )  ∈  V ) | 
						
							| 5 | 4 | elvd | ⊢ ( Fun  𝐹  →  ( 𝐹  ↾  𝑥 )  ∈  V ) | 
						
							| 6 | 1 3 5 | 3syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝑥 )  ∈  V ) | 
						
							| 7 |  | ssv | ⊢ 𝑥  ⊆  V | 
						
							| 8 |  | fnssres | ⊢ ( ( 𝐹  Fn  V  ∧  𝑥  ⊆  V )  →  ( 𝐹  ↾  𝑥 )  Fn  𝑥 ) | 
						
							| 9 | 1 7 8 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝑥 )  Fn  𝑥 ) | 
						
							| 10 | 2 | 19.21bi | ⊢ ( 𝜑  →  ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 11 |  | fvres | ⊢ ( 𝑧  ∈  𝑥  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑧  ∈  𝑥  →  ( ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  ∈  𝑧  ↔  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑧  ∈  𝑥  →  ( ( 𝑧  ≠  ∅  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  ∈  𝑧 )  ↔  ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) ) ) | 
						
							| 14 | 10 13 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑧  ∈  𝑥  →  ( 𝑧  ≠  ∅  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  ∈  𝑧 ) ) ) | 
						
							| 15 | 14 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 16 | 9 15 | jca | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝑥 )  Fn  𝑥  ∧  ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  ∈  𝑧 ) ) ) | 
						
							| 17 |  | fneq1 | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ( 𝑓  Fn  𝑥  ↔  ( 𝐹  ↾  𝑥 )  Fn  𝑥 ) ) | 
						
							| 18 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ( 𝑓 ‘ 𝑧 )  =  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 ) ) | 
						
							| 19 | 18 | eleq1d | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ( ( 𝑓 ‘ 𝑧 )  ∈  𝑧  ↔  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ( ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ↔  ( 𝑧  ≠  ∅  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  ∈  𝑧 ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ( ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 )  ↔  ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  ∈  𝑧 ) ) ) | 
						
							| 22 | 17 21 | anbi12d | ⊢ ( 𝑓  =  ( 𝐹  ↾  𝑥 )  →  ( ( 𝑓  Fn  𝑥  ∧  ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) )  ↔  ( ( 𝐹  ↾  𝑥 )  Fn  𝑥  ∧  ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( ( 𝐹  ↾  𝑥 ) ‘ 𝑧 )  ∈  𝑧 ) ) ) ) | 
						
							| 23 | 6 16 22 | spcedv | ⊢ ( 𝜑  →  ∃ 𝑓 ( 𝑓  Fn  𝑥  ∧  ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) ) ) | 
						
							| 24 | 23 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑥 ∃ 𝑓 ( 𝑓  Fn  𝑥  ∧  ∀ 𝑧  ∈  𝑥 ( 𝑧  ≠  ∅  →  ( 𝑓 ‘ 𝑧 )  ∈  𝑧 ) ) ) |