Step |
Hyp |
Ref |
Expression |
1 |
|
gblacfnacd.1 |
⊢ ( 𝜑 → 𝐹 Fn V ) |
2 |
|
gblacfnacd.2 |
⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
3 |
|
fnfun |
⊢ ( 𝐹 Fn V → Fun 𝐹 ) |
4 |
|
resfunexg |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ V ) → ( 𝐹 ↾ 𝑥 ) ∈ V ) |
5 |
4
|
elvd |
⊢ ( Fun 𝐹 → ( 𝐹 ↾ 𝑥 ) ∈ V ) |
6 |
1 3 5
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑥 ) ∈ V ) |
7 |
|
ssv |
⊢ 𝑥 ⊆ V |
8 |
|
fnssres |
⊢ ( ( 𝐹 Fn V ∧ 𝑥 ⊆ V ) → ( 𝐹 ↾ 𝑥 ) Fn 𝑥 ) |
9 |
1 7 8
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑥 ) Fn 𝑥 ) |
10 |
2
|
19.21bi |
⊢ ( 𝜑 → ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
11 |
|
fvres |
⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑧 ∈ 𝑥 → ( ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑧 ∈ 𝑥 → ( ( 𝑧 ≠ ∅ → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
14 |
10 13
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑥 → ( 𝑧 ≠ ∅ → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
15 |
14
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
16 |
9 15
|
jca |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑥 ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
17 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( 𝑓 Fn 𝑥 ↔ ( 𝐹 ↾ 𝑥 ) Fn 𝑥 ) ) |
18 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) = ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ) |
19 |
18
|
eleq1d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
22 |
17 21
|
anbi12d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ↔ ( ( 𝐹 ↾ 𝑥 ) Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( ( 𝐹 ↾ 𝑥 ) ‘ 𝑧 ) ∈ 𝑧 ) ) ) ) |
23 |
6 16 22
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
24 |
23
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∃ 𝑓 ( 𝑓 Fn 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |