| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wevgblacfn.1 | ⊢ 𝐹  =  ( 𝑧  ∈  V  ↦  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 } ) | 
						
							| 2 |  | eleq2 | ⊢ ( 𝑧  =  ∅  →  ( 𝑦  ∈  𝑧  ↔  𝑦  ∈  ∅ ) ) | 
						
							| 3 |  | raleq | ⊢ ( 𝑧  =  ∅  →  ( ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦  ↔  ∀ 𝑥  ∈  ∅ ¬  𝑥 𝑅 𝑦 ) ) | 
						
							| 4 | 2 3 | anbi12d | ⊢ ( 𝑧  =  ∅  →  ( ( 𝑦  ∈  𝑧  ∧  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 )  ↔  ( 𝑦  ∈  ∅  ∧  ∀ 𝑥  ∈  ∅ ¬  𝑥 𝑅 𝑦 ) ) ) | 
						
							| 5 | 4 | rabbidva2 | ⊢ ( 𝑧  =  ∅  →  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  { 𝑦  ∈  ∅  ∣  ∀ 𝑥  ∈  ∅ ¬  𝑥 𝑅 𝑦 } ) | 
						
							| 6 | 5 | unieqd | ⊢ ( 𝑧  =  ∅  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  ∪  { 𝑦  ∈  ∅  ∣  ∀ 𝑥  ∈  ∅ ¬  𝑥 𝑅 𝑦 } ) | 
						
							| 7 |  | rab0 | ⊢ { 𝑦  ∈  ∅  ∣  ∀ 𝑥  ∈  ∅ ¬  𝑥 𝑅 𝑦 }  =  ∅ | 
						
							| 8 | 7 | unieqi | ⊢ ∪  { 𝑦  ∈  ∅  ∣  ∀ 𝑥  ∈  ∅ ¬  𝑥 𝑅 𝑦 }  =  ∪  ∅ | 
						
							| 9 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 10 | 8 9 | eqtri | ⊢ ∪  { 𝑦  ∈  ∅  ∣  ∀ 𝑥  ∈  ∅ ¬  𝑥 𝑅 𝑦 }  =  ∅ | 
						
							| 11 | 6 10 | eqtrdi | ⊢ ( 𝑧  =  ∅  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  ∅ ) | 
						
							| 12 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 13 | 11 12 | eqeltrdi | ⊢ ( 𝑧  =  ∅  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  V ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑅  We  V  ∧  𝑧  =  ∅ )  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  V ) | 
						
							| 15 |  | ssv | ⊢ 𝑧  ⊆  V | 
						
							| 16 | 15 | jctl | ⊢ ( 𝑧  ≠  ∅  →  ( 𝑧  ⊆  V  ∧  𝑧  ≠  ∅ ) ) | 
						
							| 17 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 18 | 16 17 | jctil | ⊢ ( 𝑧  ≠  ∅  →  ( 𝑧  ∈  V  ∧  ( 𝑧  ⊆  V  ∧  𝑧  ≠  ∅ ) ) ) | 
						
							| 19 |  | 3anass | ⊢ ( ( 𝑧  ∈  V  ∧  𝑧  ⊆  V  ∧  𝑧  ≠  ∅ )  ↔  ( 𝑧  ∈  V  ∧  ( 𝑧  ⊆  V  ∧  𝑧  ≠  ∅ ) ) ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( 𝑧  ≠  ∅  →  ( 𝑧  ∈  V  ∧  𝑧  ⊆  V  ∧  𝑧  ≠  ∅ ) ) | 
						
							| 21 |  | wereu | ⊢ ( ( 𝑅  We  V  ∧  ( 𝑧  ∈  V  ∧  𝑧  ⊆  V  ∧  𝑧  ≠  ∅ ) )  →  ∃! 𝑦  ∈  𝑧 ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 ) | 
						
							| 22 | 20 21 | sylan2 | ⊢ ( ( 𝑅  We  V  ∧  𝑧  ≠  ∅ )  →  ∃! 𝑦  ∈  𝑧 ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 ) | 
						
							| 23 |  | vsnid | ⊢ 𝑤  ∈  { 𝑤 } | 
						
							| 24 |  | eleq2 | ⊢ ( { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  { 𝑤 }  →  ( 𝑤  ∈  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ↔  𝑤  ∈  { 𝑤 } ) ) | 
						
							| 25 | 23 24 | mpbiri | ⊢ ( { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  { 𝑤 }  →  𝑤  ∈  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 } ) | 
						
							| 26 |  | elrabi | ⊢ ( 𝑤  ∈  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  →  𝑤  ∈  𝑧 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  { 𝑤 }  →  𝑤  ∈  𝑧 ) | 
						
							| 28 |  | unieq | ⊢ ( { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  { 𝑤 }  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  ∪  { 𝑤 } ) | 
						
							| 29 |  | unisnv | ⊢ ∪  { 𝑤 }  =  𝑤 | 
						
							| 30 | 28 29 | eqtrdi | ⊢ ( { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  { 𝑤 }  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤 ) | 
						
							| 31 | 27 30 | jca | ⊢ ( { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  { 𝑤 }  →  ( 𝑤  ∈  𝑧  ∧  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤 ) ) | 
						
							| 32 | 31 | eximi | ⊢ ( ∃ 𝑤 { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  { 𝑤 }  →  ∃ 𝑤 ( 𝑤  ∈  𝑧  ∧  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤 ) ) | 
						
							| 33 |  | reusn | ⊢ ( ∃! 𝑦  ∈  𝑧 ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦  ↔  ∃ 𝑤 { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  { 𝑤 } ) | 
						
							| 34 |  | df-rex | ⊢ ( ∃ 𝑤  ∈  𝑧 ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤  ↔  ∃ 𝑤 ( 𝑤  ∈  𝑧  ∧  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤 ) ) | 
						
							| 35 | 32 33 34 | 3imtr4i | ⊢ ( ∃! 𝑦  ∈  𝑧 ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦  →  ∃ 𝑤  ∈  𝑧 ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤 ) | 
						
							| 36 | 22 35 | syl | ⊢ ( ( 𝑅  We  V  ∧  𝑧  ≠  ∅ )  →  ∃ 𝑤  ∈  𝑧 ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤 ) | 
						
							| 37 |  | eleq1 | ⊢ ( ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤  →  ( ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  𝑧  ↔  𝑤  ∈  𝑧 ) ) | 
						
							| 38 | 37 | biimparc | ⊢ ( ( 𝑤  ∈  𝑧  ∧  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤 )  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  𝑧 ) | 
						
							| 39 | 38 | rexlimiva | ⊢ ( ∃ 𝑤  ∈  𝑧 ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  =  𝑤  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  𝑧 ) | 
						
							| 40 | 36 39 | syl | ⊢ ( ( 𝑅  We  V  ∧  𝑧  ≠  ∅ )  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  𝑧 ) | 
						
							| 41 | 40 | elexd | ⊢ ( ( 𝑅  We  V  ∧  𝑧  ≠  ∅ )  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  V ) | 
						
							| 42 | 14 41 | pm2.61dane | ⊢ ( 𝑅  We  V  →  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  V ) | 
						
							| 43 | 42 | ralrimivw | ⊢ ( 𝑅  We  V  →  ∀ 𝑧  ∈  V ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  V ) | 
						
							| 44 | 1 | fnmpt | ⊢ ( ∀ 𝑧  ∈  V ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  V  →  𝐹  Fn  V ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝑅  We  V  →  𝐹  Fn  V ) | 
						
							| 46 | 1 | fvmpt2 | ⊢ ( ( 𝑧  ∈  V  ∧  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 }  ∈  𝑧 )  →  ( 𝐹 ‘ 𝑧 )  =  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 } ) | 
						
							| 47 | 17 40 46 | sylancr | ⊢ ( ( 𝑅  We  V  ∧  𝑧  ≠  ∅ )  →  ( 𝐹 ‘ 𝑧 )  =  ∪  { 𝑦  ∈  𝑧  ∣  ∀ 𝑥  ∈  𝑧 ¬  𝑥 𝑅 𝑦 } ) | 
						
							| 48 | 47 40 | eqeltrd | ⊢ ( ( 𝑅  We  V  ∧  𝑧  ≠  ∅ )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) | 
						
							| 49 | 48 | ex | ⊢ ( 𝑅  We  V  →  ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 50 | 49 | alrimiv | ⊢ ( 𝑅  We  V  →  ∀ 𝑧 ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) ) | 
						
							| 51 | 45 50 | jca | ⊢ ( 𝑅  We  V  →  ( 𝐹  Fn  V  ∧  ∀ 𝑧 ( 𝑧  ≠  ∅  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑧 ) ) ) |