Metamath Proof Explorer


Theorem wevgblacfn

Description: If R is a well-ordering of the universe, then F is a global choice function. Here F maps each set z to its minimal element with respect to R (except when z is the empty set, in which case it is mapped to the empty set, though this is only done for convenience). (Contributed by BTernaryTau, 29-Jun-2025)

Ref Expression
Hypothesis wevgblacfn.1 𝐹 = ( 𝑧 ∈ V ↦ { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } )
Assertion wevgblacfn ( 𝑅 We V → ( 𝐹 Fn V ∧ ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐹𝑧 ) ∈ 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 wevgblacfn.1 𝐹 = ( 𝑧 ∈ V ↦ { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } )
2 eleq2 ( 𝑧 = ∅ → ( 𝑦𝑧𝑦 ∈ ∅ ) )
3 raleq ( 𝑧 = ∅ → ( ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ) )
4 2 3 anbi12d ( 𝑧 = ∅ → ( ( 𝑦𝑧 ∧ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 ) ↔ ( 𝑦 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ) ) )
5 4 rabbidva2 ( 𝑧 = ∅ → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } )
6 5 unieqd ( 𝑧 = ∅ → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } )
7 rab0 { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } = ∅
8 7 unieqi { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } =
9 uni0 ∅ = ∅
10 8 9 eqtri { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } = ∅
11 6 10 eqtrdi ( 𝑧 = ∅ → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = ∅ )
12 0ex ∅ ∈ V
13 11 12 eqeltrdi ( 𝑧 = ∅ → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V )
14 13 adantl ( ( 𝑅 We V ∧ 𝑧 = ∅ ) → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V )
15 ssv 𝑧 ⊆ V
16 15 jctl ( 𝑧 ≠ ∅ → ( 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) )
17 vex 𝑧 ∈ V
18 16 17 jctil ( 𝑧 ≠ ∅ → ( 𝑧 ∈ V ∧ ( 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ) )
19 3anass ( ( 𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ↔ ( 𝑧 ∈ V ∧ ( 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ) )
20 18 19 sylibr ( 𝑧 ≠ ∅ → ( 𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) )
21 wereu ( ( 𝑅 We V ∧ ( 𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ) → ∃! 𝑦𝑧𝑥𝑧 ¬ 𝑥 𝑅 𝑦 )
22 20 21 sylan2 ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ∃! 𝑦𝑧𝑥𝑧 ¬ 𝑥 𝑅 𝑦 )
23 vsnid 𝑤 ∈ { 𝑤 }
24 eleq2 ( { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → ( 𝑤 ∈ { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ↔ 𝑤 ∈ { 𝑤 } ) )
25 23 24 mpbiri ( { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → 𝑤 ∈ { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } )
26 elrabi ( 𝑤 ∈ { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } → 𝑤𝑧 )
27 25 26 syl ( { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → 𝑤𝑧 )
28 unieq ( { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } )
29 unisnv { 𝑤 } = 𝑤
30 28 29 eqtrdi ( { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 )
31 27 30 jca ( { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → ( 𝑤𝑧 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) )
32 31 eximi ( ∃ 𝑤 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → ∃ 𝑤 ( 𝑤𝑧 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) )
33 reusn ( ∃! 𝑦𝑧𝑥𝑧 ¬ 𝑥 𝑅 𝑦 ↔ ∃ 𝑤 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } )
34 df-rex ( ∃ 𝑤𝑧 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ↔ ∃ 𝑤 ( 𝑤𝑧 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) )
35 32 33 34 3imtr4i ( ∃! 𝑦𝑧𝑥𝑧 ¬ 𝑥 𝑅 𝑦 → ∃ 𝑤𝑧 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 )
36 22 35 syl ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤𝑧 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 )
37 eleq1 ( { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 → ( { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧𝑤𝑧 ) )
38 37 biimparc ( ( 𝑤𝑧 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧 )
39 38 rexlimiva ( ∃ 𝑤𝑧 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧 )
40 36 39 syl ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧 )
41 40 elexd ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V )
42 14 41 pm2.61dane ( 𝑅 We V → { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V )
43 42 ralrimivw ( 𝑅 We V → ∀ 𝑧 ∈ V { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V )
44 1 fnmpt ( ∀ 𝑧 ∈ V { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V → 𝐹 Fn V )
45 43 44 syl ( 𝑅 We V → 𝐹 Fn V )
46 1 fvmpt2 ( ( 𝑧 ∈ V ∧ { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧 ) → ( 𝐹𝑧 ) = { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } )
47 17 40 46 sylancr ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ( 𝐹𝑧 ) = { 𝑦𝑧 ∣ ∀ 𝑥𝑧 ¬ 𝑥 𝑅 𝑦 } )
48 47 40 eqeltrd ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ( 𝐹𝑧 ) ∈ 𝑧 )
49 48 ex ( 𝑅 We V → ( 𝑧 ≠ ∅ → ( 𝐹𝑧 ) ∈ 𝑧 ) )
50 49 alrimiv ( 𝑅 We V → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐹𝑧 ) ∈ 𝑧 ) )
51 45 50 jca ( 𝑅 We V → ( 𝐹 Fn V ∧ ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐹𝑧 ) ∈ 𝑧 ) ) )