Step |
Hyp |
Ref |
Expression |
1 |
|
wevgblacfn.1 |
⊢ 𝐹 = ( 𝑧 ∈ V ↦ ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ) |
2 |
|
eleq2 |
⊢ ( 𝑧 = ∅ → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ∅ ) ) |
3 |
|
raleq |
⊢ ( 𝑧 = ∅ → ( ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑧 = ∅ → ( ( 𝑦 ∈ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 ) ↔ ( 𝑦 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ) ) ) |
5 |
4
|
rabbidva2 |
⊢ ( 𝑧 = ∅ → { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } ) |
6 |
5
|
unieqd |
⊢ ( 𝑧 = ∅ → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = ∪ { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } ) |
7 |
|
rab0 |
⊢ { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } = ∅ |
8 |
7
|
unieqi |
⊢ ∪ { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } = ∪ ∅ |
9 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
10 |
8 9
|
eqtri |
⊢ ∪ { 𝑦 ∈ ∅ ∣ ∀ 𝑥 ∈ ∅ ¬ 𝑥 𝑅 𝑦 } = ∅ |
11 |
6 10
|
eqtrdi |
⊢ ( 𝑧 = ∅ → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = ∅ ) |
12 |
|
0ex |
⊢ ∅ ∈ V |
13 |
11 12
|
eqeltrdi |
⊢ ( 𝑧 = ∅ → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V ) |
14 |
13
|
adantl |
⊢ ( ( 𝑅 We V ∧ 𝑧 = ∅ ) → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V ) |
15 |
|
ssv |
⊢ 𝑧 ⊆ V |
16 |
15
|
jctl |
⊢ ( 𝑧 ≠ ∅ → ( 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ) |
17 |
|
vex |
⊢ 𝑧 ∈ V |
18 |
16 17
|
jctil |
⊢ ( 𝑧 ≠ ∅ → ( 𝑧 ∈ V ∧ ( 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ) ) |
19 |
|
3anass |
⊢ ( ( 𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ↔ ( 𝑧 ∈ V ∧ ( 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ) ) |
20 |
18 19
|
sylibr |
⊢ ( 𝑧 ≠ ∅ → ( 𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ) |
21 |
|
wereu |
⊢ ( ( 𝑅 We V ∧ ( 𝑧 ∈ V ∧ 𝑧 ⊆ V ∧ 𝑧 ≠ ∅ ) ) → ∃! 𝑦 ∈ 𝑧 ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 ) |
22 |
20 21
|
sylan2 |
⊢ ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ∃! 𝑦 ∈ 𝑧 ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 ) |
23 |
|
vsnid |
⊢ 𝑤 ∈ { 𝑤 } |
24 |
|
eleq2 |
⊢ ( { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → ( 𝑤 ∈ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ↔ 𝑤 ∈ { 𝑤 } ) ) |
25 |
23 24
|
mpbiri |
⊢ ( { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → 𝑤 ∈ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ) |
26 |
|
elrabi |
⊢ ( 𝑤 ∈ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } → 𝑤 ∈ 𝑧 ) |
27 |
25 26
|
syl |
⊢ ( { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → 𝑤 ∈ 𝑧 ) |
28 |
|
unieq |
⊢ ( { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = ∪ { 𝑤 } ) |
29 |
|
unisnv |
⊢ ∪ { 𝑤 } = 𝑤 |
30 |
28 29
|
eqtrdi |
⊢ ( { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) |
31 |
27 30
|
jca |
⊢ ( { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → ( 𝑤 ∈ 𝑧 ∧ ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) ) |
32 |
31
|
eximi |
⊢ ( ∃ 𝑤 { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } → ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) ) |
33 |
|
reusn |
⊢ ( ∃! 𝑦 ∈ 𝑧 ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 ↔ ∃ 𝑤 { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = { 𝑤 } ) |
34 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ 𝑧 ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) ) |
35 |
32 33 34
|
3imtr4i |
⊢ ( ∃! 𝑦 ∈ 𝑧 ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 → ∃ 𝑤 ∈ 𝑧 ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) |
36 |
22 35
|
syl |
⊢ ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) |
37 |
|
eleq1 |
⊢ ( ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 → ( ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧 ↔ 𝑤 ∈ 𝑧 ) ) |
38 |
37
|
biimparc |
⊢ ( ( 𝑤 ∈ 𝑧 ∧ ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 ) → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧 ) |
39 |
38
|
rexlimiva |
⊢ ( ∃ 𝑤 ∈ 𝑧 ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } = 𝑤 → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧 ) |
40 |
36 39
|
syl |
⊢ ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧 ) |
41 |
40
|
elexd |
⊢ ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V ) |
42 |
14 41
|
pm2.61dane |
⊢ ( 𝑅 We V → ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V ) |
43 |
42
|
ralrimivw |
⊢ ( 𝑅 We V → ∀ 𝑧 ∈ V ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V ) |
44 |
1
|
fnmpt |
⊢ ( ∀ 𝑧 ∈ V ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ V → 𝐹 Fn V ) |
45 |
43 44
|
syl |
⊢ ( 𝑅 We V → 𝐹 Fn V ) |
46 |
1
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ V ∧ ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ∈ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) = ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ) |
47 |
17 40 46
|
sylancr |
⊢ ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ( 𝐹 ‘ 𝑧 ) = ∪ { 𝑦 ∈ 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 𝑅 𝑦 } ) |
48 |
47 40
|
eqeltrd |
⊢ ( ( 𝑅 We V ∧ 𝑧 ≠ ∅ ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) |
49 |
48
|
ex |
⊢ ( 𝑅 We V → ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
50 |
49
|
alrimiv |
⊢ ( 𝑅 We V → ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
51 |
45 50
|
jca |
⊢ ( 𝑅 We V → ( 𝐹 Fn V ∧ ∀ 𝑧 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |