Step |
Hyp |
Ref |
Expression |
1 |
|
wevgblacfn.1 |
|
2 |
|
eleq2 |
|
3 |
|
raleq |
|
4 |
2 3
|
anbi12d |
|
5 |
4
|
rabbidva2 |
|
6 |
5
|
unieqd |
|
7 |
|
rab0 |
|
8 |
7
|
unieqi |
|
9 |
|
uni0 |
|
10 |
8 9
|
eqtri |
|
11 |
6 10
|
eqtrdi |
|
12 |
|
0ex |
|
13 |
11 12
|
eqeltrdi |
|
14 |
13
|
adantl |
|
15 |
|
ssv |
|
16 |
15
|
jctl |
|
17 |
|
vex |
|
18 |
16 17
|
jctil |
|
19 |
|
3anass |
|
20 |
18 19
|
sylibr |
|
21 |
|
wereu |
|
22 |
20 21
|
sylan2 |
|
23 |
|
vsnid |
|
24 |
|
eleq2 |
|
25 |
23 24
|
mpbiri |
|
26 |
|
elrabi |
|
27 |
25 26
|
syl |
|
28 |
|
unieq |
|
29 |
|
unisnv |
|
30 |
28 29
|
eqtrdi |
|
31 |
27 30
|
jca |
|
32 |
31
|
eximi |
|
33 |
|
reusn |
|
34 |
|
df-rex |
|
35 |
32 33 34
|
3imtr4i |
|
36 |
22 35
|
syl |
|
37 |
|
eleq1 |
|
38 |
37
|
biimparc |
|
39 |
38
|
rexlimiva |
|
40 |
36 39
|
syl |
|
41 |
40
|
elexd |
|
42 |
14 41
|
pm2.61dane |
|
43 |
42
|
ralrimivw |
|
44 |
1
|
fnmpt |
|
45 |
43 44
|
syl |
|
46 |
1
|
fvmpt2 |
|
47 |
17 40 46
|
sylancr |
|
48 |
47 40
|
eqeltrd |
|
49 |
48
|
ex |
|
50 |
49
|
alrimiv |
|
51 |
45 50
|
jca |
|