Description: Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | grlicer | |- ( ~=lgr i^i ( UHGraph X. UHGraph ) ) Er UHGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grlicref | |- ( f e. UHGraph -> f ~=lgr f ) |
|
2 | grlicsym | |- ( f e. UHGraph -> ( f ~=lgr g -> g ~=lgr f ) ) |
|
3 | grlictr | |- ( ( f ~=lgr g /\ g ~=lgr h ) -> f ~=lgr h ) |
|
4 | 3 | a1i | |- ( f e. UHGraph -> ( ( f ~=lgr g /\ g ~=lgr h ) -> f ~=lgr h ) ) |
5 | 1 2 4 | brinxper | |- ( ~=lgr i^i ( UHGraph X. UHGraph ) ) Er UHGraph |