Metamath Proof Explorer


Theorem grlicer

Description: Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025)

Ref Expression
Assertion grlicer
|- ( ~=lgr i^i ( UHGraph X. UHGraph ) ) Er UHGraph

Proof

Step Hyp Ref Expression
1 grlicref
 |-  ( f e. UHGraph -> f ~=lgr f )
2 grlicsym
 |-  ( f e. UHGraph -> ( f ~=lgr g -> g ~=lgr f ) )
3 grlictr
 |-  ( ( f ~=lgr g /\ g ~=lgr h ) -> f ~=lgr h )
4 3 a1i
 |-  ( f e. UHGraph -> ( ( f ~=lgr g /\ g ~=lgr h ) -> f ~=lgr h ) )
5 1 2 4 brinxper
 |-  ( ~=lgr i^i ( UHGraph X. UHGraph ) ) Er UHGraph