Step |
Hyp |
Ref |
Expression |
1 |
|
grlicrcl |
|- ( R ~=lgr S -> ( R e. _V /\ S e. _V ) ) |
2 |
|
grlicrcl |
|- ( S ~=lgr T -> ( S e. _V /\ T e. _V ) ) |
3 |
1 2
|
anim12i |
|- ( ( R ~=lgr S /\ S ~=lgr T ) -> ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) |
4 |
|
eqid |
|- ( Vtx ` R ) = ( Vtx ` R ) |
5 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
6 |
4 5
|
grilcbri |
|- ( R ~=lgr S -> E. g ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) |
7 |
|
eqid |
|- ( Vtx ` T ) = ( Vtx ` T ) |
8 |
5 7
|
grilcbri |
|- ( S ~=lgr T -> E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) ) |
9 |
|
vex |
|- h e. _V |
10 |
|
vex |
|- g e. _V |
11 |
9 10
|
coex |
|- ( h o. g ) e. _V |
12 |
11
|
a1i |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> ( h o. g ) e. _V ) |
13 |
|
f1oco |
|- ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) -> ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) ) |
14 |
13
|
ad2ant2r |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) ) |
15 |
|
f1of |
|- ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) -> g : ( Vtx ` R ) --> ( Vtx ` S ) ) |
16 |
15
|
ffvelcdmda |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( g ` r ) e. ( Vtx ` S ) ) |
17 |
|
oveq2 |
|- ( s = ( g ` r ) -> ( S ClNeighbVtx s ) = ( S ClNeighbVtx ( g ` r ) ) ) |
18 |
17
|
oveq2d |
|- ( s = ( g ` r ) -> ( S ISubGr ( S ClNeighbVtx s ) ) = ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) |
19 |
|
fveq2 |
|- ( s = ( g ` r ) -> ( h ` s ) = ( h ` ( g ` r ) ) ) |
20 |
19
|
oveq2d |
|- ( s = ( g ` r ) -> ( T ClNeighbVtx ( h ` s ) ) = ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) |
21 |
20
|
oveq2d |
|- ( s = ( g ` r ) -> ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) = ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) |
22 |
18 21
|
breq12d |
|- ( s = ( g ` r ) -> ( ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) <-> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) ) |
23 |
22
|
rspcv |
|- ( ( g ` r ) e. ( Vtx ` S ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) ) |
24 |
16 23
|
syl |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) ) |
25 |
|
fvco3 |
|- ( ( g : ( Vtx ` R ) --> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( ( h o. g ) ` r ) = ( h ` ( g ` r ) ) ) |
26 |
15 25
|
sylan |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( ( h o. g ) ` r ) = ( h ` ( g ` r ) ) ) |
27 |
26
|
eqcomd |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( h ` ( g ` r ) ) = ( ( h o. g ) ` r ) ) |
28 |
27
|
oveq2d |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( T ClNeighbVtx ( h ` ( g ` r ) ) ) = ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) |
29 |
28
|
oveq2d |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) = ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
30 |
29
|
breq2d |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) <-> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
31 |
24 30
|
sylibd |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
32 |
31
|
ex |
|- ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) -> ( r e. ( Vtx ` R ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) ) |
33 |
32
|
com3r |
|- ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) -> ( r e. ( Vtx ` R ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) ) |
34 |
33
|
imp31 |
|- ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
35 |
34
|
anim1ci |
|- ( ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) /\ ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) /\ ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
36 |
|
grictr |
|- ( ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) /\ ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) -> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
37 |
35 36
|
syl |
|- ( ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) /\ ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
38 |
37
|
ex |
|- ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) -> ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) -> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
39 |
38
|
ralimdva |
|- ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) -> ( A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
40 |
39
|
expimpd |
|- ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
41 |
40
|
adantl |
|- ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
42 |
41
|
imp |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
43 |
14 42
|
jca |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> ( ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
44 |
|
f1oeq1 |
|- ( f = ( h o. g ) -> ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) <-> ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) ) ) |
45 |
|
fveq1 |
|- ( f = ( h o. g ) -> ( f ` r ) = ( ( h o. g ) ` r ) ) |
46 |
45
|
oveq2d |
|- ( f = ( h o. g ) -> ( T ClNeighbVtx ( f ` r ) ) = ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) |
47 |
46
|
oveq2d |
|- ( f = ( h o. g ) -> ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) = ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
48 |
47
|
breq2d |
|- ( f = ( h o. g ) -> ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) <-> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
49 |
48
|
ralbidv |
|- ( f = ( h o. g ) -> ( A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) <-> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
50 |
44 49
|
anbi12d |
|- ( f = ( h o. g ) -> ( ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) <-> ( ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) ) |
51 |
12 43 50
|
spcedv |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
52 |
51
|
ex |
|- ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
53 |
52
|
exlimiv |
|- ( E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
54 |
53
|
com12 |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
55 |
54
|
exlimiv |
|- ( E. g ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
56 |
55
|
imp |
|- ( ( E. g ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) /\ E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
57 |
6 8 56
|
syl2an |
|- ( ( R ~=lgr S /\ S ~=lgr T ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
58 |
57
|
adantr |
|- ( ( ( R ~=lgr S /\ S ~=lgr T ) /\ ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
59 |
4 7
|
dfgrlic2 |
|- ( ( R e. _V /\ T e. _V ) -> ( R ~=lgr T <-> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
60 |
59
|
ad2ant2rl |
|- ( ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) -> ( R ~=lgr T <-> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
61 |
60
|
adantl |
|- ( ( ( R ~=lgr S /\ S ~=lgr T ) /\ ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) -> ( R ~=lgr T <-> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
62 |
58 61
|
mpbird |
|- ( ( ( R ~=lgr S /\ S ~=lgr T ) /\ ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) -> R ~=lgr T ) |
63 |
3 62
|
mpdan |
|- ( ( R ~=lgr S /\ S ~=lgr T ) -> R ~=lgr T ) |