| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grlicrcl |
|- ( R ~=lgr S -> ( R e. _V /\ S e. _V ) ) |
| 2 |
|
grlicrcl |
|- ( S ~=lgr T -> ( S e. _V /\ T e. _V ) ) |
| 3 |
1 2
|
anim12i |
|- ( ( R ~=lgr S /\ S ~=lgr T ) -> ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) |
| 4 |
|
eqid |
|- ( Vtx ` R ) = ( Vtx ` R ) |
| 5 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
| 6 |
4 5
|
grilcbri |
|- ( R ~=lgr S -> E. g ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) |
| 7 |
|
eqid |
|- ( Vtx ` T ) = ( Vtx ` T ) |
| 8 |
5 7
|
grilcbri |
|- ( S ~=lgr T -> E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) ) |
| 9 |
|
vex |
|- h e. _V |
| 10 |
|
vex |
|- g e. _V |
| 11 |
9 10
|
coex |
|- ( h o. g ) e. _V |
| 12 |
11
|
a1i |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> ( h o. g ) e. _V ) |
| 13 |
|
f1oco |
|- ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) -> ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) ) |
| 14 |
13
|
ad2ant2r |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) ) |
| 15 |
|
f1of |
|- ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) -> g : ( Vtx ` R ) --> ( Vtx ` S ) ) |
| 16 |
15
|
ffvelcdmda |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( g ` r ) e. ( Vtx ` S ) ) |
| 17 |
|
oveq2 |
|- ( s = ( g ` r ) -> ( S ClNeighbVtx s ) = ( S ClNeighbVtx ( g ` r ) ) ) |
| 18 |
17
|
oveq2d |
|- ( s = ( g ` r ) -> ( S ISubGr ( S ClNeighbVtx s ) ) = ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) |
| 19 |
|
fveq2 |
|- ( s = ( g ` r ) -> ( h ` s ) = ( h ` ( g ` r ) ) ) |
| 20 |
19
|
oveq2d |
|- ( s = ( g ` r ) -> ( T ClNeighbVtx ( h ` s ) ) = ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) |
| 21 |
20
|
oveq2d |
|- ( s = ( g ` r ) -> ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) = ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) |
| 22 |
18 21
|
breq12d |
|- ( s = ( g ` r ) -> ( ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) <-> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) ) |
| 23 |
22
|
rspcv |
|- ( ( g ` r ) e. ( Vtx ` S ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) ) |
| 24 |
16 23
|
syl |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) ) ) |
| 25 |
|
fvco3 |
|- ( ( g : ( Vtx ` R ) --> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( ( h o. g ) ` r ) = ( h ` ( g ` r ) ) ) |
| 26 |
15 25
|
sylan |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( ( h o. g ) ` r ) = ( h ` ( g ` r ) ) ) |
| 27 |
26
|
eqcomd |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( h ` ( g ` r ) ) = ( ( h o. g ) ` r ) ) |
| 28 |
27
|
oveq2d |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( T ClNeighbVtx ( h ` ( g ` r ) ) ) = ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) |
| 29 |
28
|
oveq2d |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) = ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 30 |
29
|
breq2d |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` ( g ` r ) ) ) ) <-> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 31 |
24 30
|
sylibd |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ r e. ( Vtx ` R ) ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 32 |
31
|
ex |
|- ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) -> ( r e. ( Vtx ` R ) -> ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) ) |
| 33 |
32
|
com3r |
|- ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) -> ( r e. ( Vtx ` R ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) ) |
| 34 |
33
|
imp31 |
|- ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) -> ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 35 |
34
|
anim1ci |
|- ( ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) /\ ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) /\ ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 36 |
|
grictr |
|- ( ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) /\ ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) -> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 37 |
35 36
|
syl |
|- ( ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) /\ ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 38 |
37
|
ex |
|- ( ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) /\ r e. ( Vtx ` R ) ) -> ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) -> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 39 |
38
|
ralimdva |
|- ( ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) /\ g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) ) -> ( A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 40 |
39
|
expimpd |
|- ( A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 41 |
40
|
adantl |
|- ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 42 |
41
|
imp |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 43 |
14 42
|
jca |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> ( ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 44 |
|
f1oeq1 |
|- ( f = ( h o. g ) -> ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) <-> ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) ) ) |
| 45 |
|
fveq1 |
|- ( f = ( h o. g ) -> ( f ` r ) = ( ( h o. g ) ` r ) ) |
| 46 |
45
|
oveq2d |
|- ( f = ( h o. g ) -> ( T ClNeighbVtx ( f ` r ) ) = ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) |
| 47 |
46
|
oveq2d |
|- ( f = ( h o. g ) -> ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) = ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) |
| 48 |
47
|
breq2d |
|- ( f = ( h o. g ) -> ( ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) <-> ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 49 |
48
|
ralbidv |
|- ( f = ( h o. g ) -> ( A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) <-> A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) |
| 50 |
44 49
|
anbi12d |
|- ( f = ( h o. g ) -> ( ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) <-> ( ( h o. g ) : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( ( h o. g ) ` r ) ) ) ) ) ) |
| 51 |
12 43 50
|
spcedv |
|- ( ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) /\ ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
| 52 |
51
|
ex |
|- ( ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 53 |
52
|
exlimiv |
|- ( E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 54 |
53
|
com12 |
|- ( ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 55 |
54
|
exlimiv |
|- ( E. g ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) -> ( E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 56 |
55
|
imp |
|- ( ( E. g ( g : ( Vtx ` R ) -1-1-onto-> ( Vtx ` S ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( S ISubGr ( S ClNeighbVtx ( g ` r ) ) ) ) /\ E. h ( h : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ A. s e. ( Vtx ` S ) ( S ISubGr ( S ClNeighbVtx s ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( h ` s ) ) ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
| 57 |
6 8 56
|
syl2an |
|- ( ( R ~=lgr S /\ S ~=lgr T ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
| 58 |
57
|
adantr |
|- ( ( ( R ~=lgr S /\ S ~=lgr T ) /\ ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) -> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) |
| 59 |
4 7
|
dfgrlic2 |
|- ( ( R e. _V /\ T e. _V ) -> ( R ~=lgr T <-> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 60 |
59
|
ad2ant2rl |
|- ( ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) -> ( R ~=lgr T <-> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 61 |
60
|
adantl |
|- ( ( ( R ~=lgr S /\ S ~=lgr T ) /\ ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) -> ( R ~=lgr T <-> E. f ( f : ( Vtx ` R ) -1-1-onto-> ( Vtx ` T ) /\ A. r e. ( Vtx ` R ) ( R ISubGr ( R ClNeighbVtx r ) ) ~=gr ( T ISubGr ( T ClNeighbVtx ( f ` r ) ) ) ) ) ) |
| 62 |
58 61
|
mpbird |
|- ( ( ( R ~=lgr S /\ S ~=lgr T ) /\ ( ( R e. _V /\ S e. _V ) /\ ( S e. _V /\ T e. _V ) ) ) -> R ~=lgr T ) |
| 63 |
3 62
|
mpdan |
|- ( ( R ~=lgr S /\ S ~=lgr T ) -> R ~=lgr T ) |