Metamath Proof Explorer


Theorem grlictr

Description: Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025)

Ref Expression
Assertion grlictr R 𝑙𝑔𝑟 S S 𝑙𝑔𝑟 T R 𝑙𝑔𝑟 T

Proof

Step Hyp Ref Expression
1 grlicrcl R 𝑙𝑔𝑟 S R V S V
2 grlicrcl S 𝑙𝑔𝑟 T S V T V
3 1 2 anim12i R 𝑙𝑔𝑟 S S 𝑙𝑔𝑟 T R V S V S V T V
4 eqid Vtx R = Vtx R
5 eqid Vtx S = Vtx S
6 4 5 grilcbri R 𝑙𝑔𝑟 S g g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r
7 eqid Vtx T = Vtx T
8 5 7 grilcbri S 𝑙𝑔𝑟 T h h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s
9 vex h V
10 vex g V
11 9 10 coex h g V
12 11 a1i h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r h g V
13 f1oco h : Vtx S 1-1 onto Vtx T g : Vtx R 1-1 onto Vtx S h g : Vtx R 1-1 onto Vtx T
14 13 ad2ant2r h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r h g : Vtx R 1-1 onto Vtx T
15 f1of g : Vtx R 1-1 onto Vtx S g : Vtx R Vtx S
16 15 ffvelcdmda g : Vtx R 1-1 onto Vtx S r Vtx R g r Vtx S
17 oveq2 s = g r S ClNeighbVtx s = S ClNeighbVtx g r
18 17 oveq2d s = g r S ISubGr S ClNeighbVtx s = S ISubGr S ClNeighbVtx g r
19 fveq2 s = g r h s = h g r
20 19 oveq2d s = g r T ClNeighbVtx h s = T ClNeighbVtx h g r
21 20 oveq2d s = g r T ISubGr T ClNeighbVtx h s = T ISubGr T ClNeighbVtx h g r
22 18 21 breq12d s = g r S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
23 22 rspcv g r Vtx S s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
24 16 23 syl g : Vtx R 1-1 onto Vtx S r Vtx R s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
25 fvco3 g : Vtx R Vtx S r Vtx R h g r = h g r
26 15 25 sylan g : Vtx R 1-1 onto Vtx S r Vtx R h g r = h g r
27 26 eqcomd g : Vtx R 1-1 onto Vtx S r Vtx R h g r = h g r
28 27 oveq2d g : Vtx R 1-1 onto Vtx S r Vtx R T ClNeighbVtx h g r = T ClNeighbVtx h g r
29 28 oveq2d g : Vtx R 1-1 onto Vtx S r Vtx R T ISubGr T ClNeighbVtx h g r = T ISubGr T ClNeighbVtx h g r
30 29 breq2d g : Vtx R 1-1 onto Vtx S r Vtx R S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
31 24 30 sylibd g : Vtx R 1-1 onto Vtx S r Vtx R s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
32 31 ex g : Vtx R 1-1 onto Vtx S r Vtx R s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
33 32 com3r s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
34 33 imp31 s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
35 34 anim1ci s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
36 grictr R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r S ISubGr S ClNeighbVtx g r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
37 35 36 syl s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
38 37 ex s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
39 38 ralimdva s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
40 39 expimpd s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
41 40 adantl h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
42 41 imp h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
43 14 42 jca h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r h g : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
44 f1oeq1 f = h g f : Vtx R 1-1 onto Vtx T h g : Vtx R 1-1 onto Vtx T
45 fveq1 f = h g f r = h g r
46 45 oveq2d f = h g T ClNeighbVtx f r = T ClNeighbVtx h g r
47 46 oveq2d f = h g T ISubGr T ClNeighbVtx f r = T ISubGr T ClNeighbVtx h g r
48 47 breq2d f = h g R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
49 48 ralbidv f = h g r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
50 44 49 anbi12d f = h g f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r h g : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx h g r
51 12 43 50 spcedv h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
52 51 ex h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
53 52 exlimiv h h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
54 53 com12 g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r h h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
55 54 exlimiv g g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r h h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
56 55 imp g g : Vtx R 1-1 onto Vtx S r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 S ISubGr S ClNeighbVtx g r h h : Vtx S 1-1 onto Vtx T s Vtx S S ISubGr S ClNeighbVtx s 𝑔𝑟 T ISubGr T ClNeighbVtx h s f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
57 6 8 56 syl2an R 𝑙𝑔𝑟 S S 𝑙𝑔𝑟 T f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
58 57 adantr R 𝑙𝑔𝑟 S S 𝑙𝑔𝑟 T R V S V S V T V f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
59 4 7 dfgrlic2 R V T V R 𝑙𝑔𝑟 T f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
60 59 ad2ant2rl R V S V S V T V R 𝑙𝑔𝑟 T f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
61 60 adantl R 𝑙𝑔𝑟 S S 𝑙𝑔𝑟 T R V S V S V T V R 𝑙𝑔𝑟 T f f : Vtx R 1-1 onto Vtx T r Vtx R R ISubGr R ClNeighbVtx r 𝑔𝑟 T ISubGr T ClNeighbVtx f r
62 58 61 mpbird R 𝑙𝑔𝑟 S S 𝑙𝑔𝑟 T R V S V S V T V R 𝑙𝑔𝑟 T
63 3 62 mpdan R 𝑙𝑔𝑟 S S 𝑙𝑔𝑟 T R 𝑙𝑔𝑟 T