Metamath Proof Explorer


Theorem grlicer

Description: Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025)

Ref Expression
Assertion grlicer 𝑙𝑔𝑟 UHGraph × UHGraph Er UHGraph

Proof

Step Hyp Ref Expression
1 grlicref f UHGraph f 𝑙𝑔𝑟 f
2 grlicsym f UHGraph f 𝑙𝑔𝑟 g g 𝑙𝑔𝑟 f
3 grlictr f 𝑙𝑔𝑟 g g 𝑙𝑔𝑟 h f 𝑙𝑔𝑟 h
4 3 a1i f UHGraph f 𝑙𝑔𝑟 g g 𝑙𝑔𝑟 h f 𝑙𝑔𝑟 h
5 1 2 4 brinxper 𝑙𝑔𝑟 UHGraph × UHGraph Er UHGraph