Description: Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grlicer | ⊢ ( ≃𝑙𝑔𝑟 ∩ ( UHGraph × UHGraph ) ) Er UHGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlicref | ⊢ ( 𝑓 ∈ UHGraph → 𝑓 ≃𝑙𝑔𝑟 𝑓 ) | |
| 2 | grlicsym | ⊢ ( 𝑓 ∈ UHGraph → ( 𝑓 ≃𝑙𝑔𝑟 𝑔 → 𝑔 ≃𝑙𝑔𝑟 𝑓 ) ) | |
| 3 | grlictr | ⊢ ( ( 𝑓 ≃𝑙𝑔𝑟 𝑔 ∧ 𝑔 ≃𝑙𝑔𝑟 ℎ ) → 𝑓 ≃𝑙𝑔𝑟 ℎ ) | |
| 4 | 3 | a1i | ⊢ ( 𝑓 ∈ UHGraph → ( ( 𝑓 ≃𝑙𝑔𝑟 𝑔 ∧ 𝑔 ≃𝑙𝑔𝑟 ℎ ) → 𝑓 ≃𝑙𝑔𝑟 ℎ ) ) |
| 5 | 1 2 4 | brinxper | ⊢ ( ≃𝑙𝑔𝑟 ∩ ( UHGraph × UHGraph ) ) Er UHGraph |