Metamath Proof Explorer


Theorem grlicer

Description: Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025)

Ref Expression
Assertion grlicer ( ≃𝑙𝑔𝑟 ∩ ( UHGraph × UHGraph ) ) Er UHGraph

Proof

Step Hyp Ref Expression
1 grlicref ( 𝑓 ∈ UHGraph → 𝑓𝑙𝑔𝑟 𝑓 )
2 grlicsym ( 𝑓 ∈ UHGraph → ( 𝑓𝑙𝑔𝑟 𝑔𝑔𝑙𝑔𝑟 𝑓 ) )
3 grlictr ( ( 𝑓𝑙𝑔𝑟 𝑔𝑔𝑙𝑔𝑟 ) → 𝑓𝑙𝑔𝑟 )
4 3 a1i ( 𝑓 ∈ UHGraph → ( ( 𝑓𝑙𝑔𝑟 𝑔𝑔𝑙𝑔𝑟 ) → 𝑓𝑙𝑔𝑟 ) )
5 1 2 4 brinxper ( ≃𝑙𝑔𝑟 ∩ ( UHGraph × UHGraph ) ) Er UHGraph