| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grp1.m |
|- M = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } |
| 2 |
1
|
grp1 |
|- ( I e. V -> M e. Grp ) |
| 3 |
|
snex |
|- { I } e. _V |
| 4 |
1
|
grpbase |
|- ( { I } e. _V -> { I } = ( Base ` M ) ) |
| 5 |
3 4
|
ax-mp |
|- { I } = ( Base ` M ) |
| 6 |
|
eqid |
|- ( invg ` M ) = ( invg ` M ) |
| 7 |
5 6
|
grpinvf |
|- ( M e. Grp -> ( invg ` M ) : { I } --> { I } ) |
| 8 |
2 7
|
syl |
|- ( I e. V -> ( invg ` M ) : { I } --> { I } ) |
| 9 |
|
fsng |
|- ( ( I e. V /\ I e. V ) -> ( ( invg ` M ) : { I } --> { I } <-> ( invg ` M ) = { <. I , I >. } ) ) |
| 10 |
9
|
anidms |
|- ( I e. V -> ( ( invg ` M ) : { I } --> { I } <-> ( invg ` M ) = { <. I , I >. } ) ) |
| 11 |
|
simpr |
|- ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> ( invg ` M ) = { <. I , I >. } ) |
| 12 |
|
restidsing |
|- ( _I |` { I } ) = ( { I } X. { I } ) |
| 13 |
|
xpsng |
|- ( ( I e. V /\ I e. V ) -> ( { I } X. { I } ) = { <. I , I >. } ) |
| 14 |
13
|
anidms |
|- ( I e. V -> ( { I } X. { I } ) = { <. I , I >. } ) |
| 15 |
12 14
|
eqtr2id |
|- ( I e. V -> { <. I , I >. } = ( _I |` { I } ) ) |
| 16 |
15
|
adantr |
|- ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> { <. I , I >. } = ( _I |` { I } ) ) |
| 17 |
11 16
|
eqtrd |
|- ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> ( invg ` M ) = ( _I |` { I } ) ) |
| 18 |
17
|
ex |
|- ( I e. V -> ( ( invg ` M ) = { <. I , I >. } -> ( invg ` M ) = ( _I |` { I } ) ) ) |
| 19 |
10 18
|
sylbid |
|- ( I e. V -> ( ( invg ` M ) : { I } --> { I } -> ( invg ` M ) = ( _I |` { I } ) ) ) |
| 20 |
8 19
|
mpd |
|- ( I e. V -> ( invg ` M ) = ( _I |` { I } ) ) |