Step |
Hyp |
Ref |
Expression |
1 |
|
grp1.m |
|- M = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } |
2 |
1
|
grp1 |
|- ( I e. V -> M e. Grp ) |
3 |
|
snex |
|- { I } e. _V |
4 |
1
|
grpbase |
|- ( { I } e. _V -> { I } = ( Base ` M ) ) |
5 |
3 4
|
ax-mp |
|- { I } = ( Base ` M ) |
6 |
|
eqid |
|- ( invg ` M ) = ( invg ` M ) |
7 |
5 6
|
grpinvf |
|- ( M e. Grp -> ( invg ` M ) : { I } --> { I } ) |
8 |
2 7
|
syl |
|- ( I e. V -> ( invg ` M ) : { I } --> { I } ) |
9 |
|
fsng |
|- ( ( I e. V /\ I e. V ) -> ( ( invg ` M ) : { I } --> { I } <-> ( invg ` M ) = { <. I , I >. } ) ) |
10 |
9
|
anidms |
|- ( I e. V -> ( ( invg ` M ) : { I } --> { I } <-> ( invg ` M ) = { <. I , I >. } ) ) |
11 |
|
simpr |
|- ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> ( invg ` M ) = { <. I , I >. } ) |
12 |
|
restidsing |
|- ( _I |` { I } ) = ( { I } X. { I } ) |
13 |
|
xpsng |
|- ( ( I e. V /\ I e. V ) -> ( { I } X. { I } ) = { <. I , I >. } ) |
14 |
13
|
anidms |
|- ( I e. V -> ( { I } X. { I } ) = { <. I , I >. } ) |
15 |
12 14
|
eqtr2id |
|- ( I e. V -> { <. I , I >. } = ( _I |` { I } ) ) |
16 |
15
|
adantr |
|- ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> { <. I , I >. } = ( _I |` { I } ) ) |
17 |
11 16
|
eqtrd |
|- ( ( I e. V /\ ( invg ` M ) = { <. I , I >. } ) -> ( invg ` M ) = ( _I |` { I } ) ) |
18 |
17
|
ex |
|- ( I e. V -> ( ( invg ` M ) = { <. I , I >. } -> ( invg ` M ) = ( _I |` { I } ) ) ) |
19 |
10 18
|
sylbid |
|- ( I e. V -> ( ( invg ` M ) : { I } --> { I } -> ( invg ` M ) = ( _I |` { I } ) ) ) |
20 |
8 19
|
mpd |
|- ( I e. V -> ( invg ` M ) = ( _I |` { I } ) ) |