| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpvlinv.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | grpvlinv.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | grpvlinv.n |  |-  N = ( invg ` G ) | 
						
							| 4 |  | grpvlinv.z |  |-  .0. = ( 0g ` G ) | 
						
							| 5 |  | simpll |  |-  ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ x e. I ) -> G e. Grp ) | 
						
							| 6 |  | elmapi |  |-  ( X e. ( B ^m I ) -> X : I --> B ) | 
						
							| 7 | 6 | adantl |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> X : I --> B ) | 
						
							| 8 | 7 | ffvelcdmda |  |-  ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ x e. I ) -> ( X ` x ) e. B ) | 
						
							| 9 | 1 2 4 3 | grprinv |  |-  ( ( G e. Grp /\ ( X ` x ) e. B ) -> ( ( X ` x ) .+ ( N ` ( X ` x ) ) ) = .0. ) | 
						
							| 10 | 5 8 9 | syl2anc |  |-  ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ x e. I ) -> ( ( X ` x ) .+ ( N ` ( X ` x ) ) ) = .0. ) | 
						
							| 11 | 10 | mpteq2dva |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( x e. I |-> ( ( X ` x ) .+ ( N ` ( X ` x ) ) ) ) = ( x e. I |-> .0. ) ) | 
						
							| 12 |  | elmapex |  |-  ( X e. ( B ^m I ) -> ( B e. _V /\ I e. _V ) ) | 
						
							| 13 | 12 | simprd |  |-  ( X e. ( B ^m I ) -> I e. _V ) | 
						
							| 14 | 13 | adantl |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> I e. _V ) | 
						
							| 15 |  | fvexd |  |-  ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ x e. I ) -> ( N ` ( X ` x ) ) e. _V ) | 
						
							| 16 | 7 | feqmptd |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> X = ( x e. I |-> ( X ` x ) ) ) | 
						
							| 17 | 1 3 | grpinvf |  |-  ( G e. Grp -> N : B --> B ) | 
						
							| 18 |  | fcompt |  |-  ( ( N : B --> B /\ X : I --> B ) -> ( N o. X ) = ( x e. I |-> ( N ` ( X ` x ) ) ) ) | 
						
							| 19 | 17 6 18 | syl2an |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( N o. X ) = ( x e. I |-> ( N ` ( X ` x ) ) ) ) | 
						
							| 20 | 14 8 15 16 19 | offval2 |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( X oF .+ ( N o. X ) ) = ( x e. I |-> ( ( X ` x ) .+ ( N ` ( X ` x ) ) ) ) ) | 
						
							| 21 |  | fconstmpt |  |-  ( I X. { .0. } ) = ( x e. I |-> .0. ) | 
						
							| 22 | 21 | a1i |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( I X. { .0. } ) = ( x e. I |-> .0. ) ) | 
						
							| 23 | 11 20 22 | 3eqtr4d |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( X oF .+ ( N o. X ) ) = ( I X. { .0. } ) ) |