| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumxp.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumxp.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumxp.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsumxp.a |
|- ( ph -> A e. V ) |
| 5 |
|
gsumxp.r |
|- ( ph -> C e. W ) |
| 6 |
|
gsumxp.f |
|- ( ph -> F : ( A X. C ) --> B ) |
| 7 |
|
gsumxp.w |
|- ( ph -> F finSupp .0. ) |
| 8 |
4 5
|
xpexd |
|- ( ph -> ( A X. C ) e. _V ) |
| 9 |
|
relxp |
|- Rel ( A X. C ) |
| 10 |
9
|
a1i |
|- ( ph -> Rel ( A X. C ) ) |
| 11 |
|
dmxpss |
|- dom ( A X. C ) C_ A |
| 12 |
11
|
a1i |
|- ( ph -> dom ( A X. C ) C_ A ) |
| 13 |
1 2 3 8 10 4 12 6 7
|
gsum2d |
|- ( ph -> ( G gsum F ) = ( G gsum ( j e. A |-> ( G gsum ( k e. ( ( A X. C ) " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 14 |
|
df-ima |
|- ( ( A X. C ) " { j } ) = ran ( ( A X. C ) |` { j } ) |
| 15 |
|
df-res |
|- ( ( A X. C ) |` { j } ) = ( ( A X. C ) i^i ( { j } X. _V ) ) |
| 16 |
|
inxp |
|- ( ( A X. C ) i^i ( { j } X. _V ) ) = ( ( A i^i { j } ) X. ( C i^i _V ) ) |
| 17 |
15 16
|
eqtri |
|- ( ( A X. C ) |` { j } ) = ( ( A i^i { j } ) X. ( C i^i _V ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ j e. A ) -> j e. A ) |
| 19 |
18
|
snssd |
|- ( ( ph /\ j e. A ) -> { j } C_ A ) |
| 20 |
|
sseqin2 |
|- ( { j } C_ A <-> ( A i^i { j } ) = { j } ) |
| 21 |
19 20
|
sylib |
|- ( ( ph /\ j e. A ) -> ( A i^i { j } ) = { j } ) |
| 22 |
|
inv1 |
|- ( C i^i _V ) = C |
| 23 |
22
|
a1i |
|- ( ( ph /\ j e. A ) -> ( C i^i _V ) = C ) |
| 24 |
21 23
|
xpeq12d |
|- ( ( ph /\ j e. A ) -> ( ( A i^i { j } ) X. ( C i^i _V ) ) = ( { j } X. C ) ) |
| 25 |
17 24
|
eqtrid |
|- ( ( ph /\ j e. A ) -> ( ( A X. C ) |` { j } ) = ( { j } X. C ) ) |
| 26 |
25
|
rneqd |
|- ( ( ph /\ j e. A ) -> ran ( ( A X. C ) |` { j } ) = ran ( { j } X. C ) ) |
| 27 |
|
vex |
|- j e. _V |
| 28 |
27
|
snnz |
|- { j } =/= (/) |
| 29 |
|
rnxp |
|- ( { j } =/= (/) -> ran ( { j } X. C ) = C ) |
| 30 |
28 29
|
ax-mp |
|- ran ( { j } X. C ) = C |
| 31 |
26 30
|
eqtrdi |
|- ( ( ph /\ j e. A ) -> ran ( ( A X. C ) |` { j } ) = C ) |
| 32 |
14 31
|
eqtrid |
|- ( ( ph /\ j e. A ) -> ( ( A X. C ) " { j } ) = C ) |
| 33 |
32
|
mpteq1d |
|- ( ( ph /\ j e. A ) -> ( k e. ( ( A X. C ) " { j } ) |-> ( j F k ) ) = ( k e. C |-> ( j F k ) ) ) |
| 34 |
33
|
oveq2d |
|- ( ( ph /\ j e. A ) -> ( G gsum ( k e. ( ( A X. C ) " { j } ) |-> ( j F k ) ) ) = ( G gsum ( k e. C |-> ( j F k ) ) ) ) |
| 35 |
34
|
mpteq2dva |
|- ( ph -> ( j e. A |-> ( G gsum ( k e. ( ( A X. C ) " { j } ) |-> ( j F k ) ) ) ) = ( j e. A |-> ( G gsum ( k e. C |-> ( j F k ) ) ) ) ) |
| 36 |
35
|
oveq2d |
|- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. ( ( A X. C ) " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> ( j F k ) ) ) ) ) ) |
| 37 |
13 36
|
eqtrd |
|- ( ph -> ( G gsum F ) = ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> ( j F k ) ) ) ) ) ) |