| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ishlg.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | ishlg.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | ishlg.a |  |-  ( ph -> A e. P ) | 
						
							| 5 |  | ishlg.b |  |-  ( ph -> B e. P ) | 
						
							| 6 |  | ishlg.c |  |-  ( ph -> C e. P ) | 
						
							| 7 |  | hlln.1 |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | hltr.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | hlcgrex.m |  |-  .- = ( dist ` G ) | 
						
							| 10 |  | hlcgrex.1 |  |-  ( ph -> D =/= A ) | 
						
							| 11 |  | hlcgrex.2 |  |-  ( ph -> B =/= C ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | hlcgrex |  |-  ( ph -> E. x e. P ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) ) | 
						
							| 13 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> A e. P ) | 
						
							| 14 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> B e. P ) | 
						
							| 15 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> C e. P ) | 
						
							| 16 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> G e. TarskiG ) | 
						
							| 17 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> D e. P ) | 
						
							| 18 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> D =/= A ) | 
						
							| 19 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> B =/= C ) | 
						
							| 20 |  | simpllr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> x e. P ) | 
						
							| 21 |  | simplr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> y e. P ) | 
						
							| 22 |  | simprll |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> x ( K ` A ) D ) | 
						
							| 23 |  | simprrl |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> y ( K ` A ) D ) | 
						
							| 24 |  | simprlr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> ( A .- x ) = ( B .- C ) ) | 
						
							| 25 |  | simprrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> ( A .- y ) = ( B .- C ) ) | 
						
							| 26 | 1 2 3 13 14 15 16 17 9 18 19 20 21 22 23 24 25 | hlcgreulem |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) -> x = y ) | 
						
							| 27 | 26 | ex |  |-  ( ( ( ph /\ x e. P ) /\ y e. P ) -> ( ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) -> x = y ) ) | 
						
							| 28 | 27 | ralrimiva |  |-  ( ( ph /\ x e. P ) -> A. y e. P ( ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) -> x = y ) ) | 
						
							| 29 | 28 | ralrimiva |  |-  ( ph -> A. x e. P A. y e. P ( ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) -> x = y ) ) | 
						
							| 30 |  | breq1 |  |-  ( x = y -> ( x ( K ` A ) D <-> y ( K ` A ) D ) ) | 
						
							| 31 |  | oveq2 |  |-  ( x = y -> ( A .- x ) = ( A .- y ) ) | 
						
							| 32 | 31 | eqeq1d |  |-  ( x = y -> ( ( A .- x ) = ( B .- C ) <-> ( A .- y ) = ( B .- C ) ) ) | 
						
							| 33 | 30 32 | anbi12d |  |-  ( x = y -> ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) <-> ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) ) | 
						
							| 34 | 33 | reu4 |  |-  ( E! x e. P ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) <-> ( E. x e. P ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ A. x e. P A. y e. P ( ( ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) /\ ( y ( K ` A ) D /\ ( A .- y ) = ( B .- C ) ) ) -> x = y ) ) ) | 
						
							| 35 | 12 29 34 | sylanbrc |  |-  ( ph -> E! x e. P ( x ( K ` A ) D /\ ( A .- x ) = ( B .- C ) ) ) |