| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|
| 2 |
|
ishlg.i |
|
| 3 |
|
ishlg.k |
|
| 4 |
|
ishlg.a |
|
| 5 |
|
ishlg.b |
|
| 6 |
|
ishlg.c |
|
| 7 |
|
hlln.1 |
|
| 8 |
|
hltr.d |
|
| 9 |
|
hlcgrex.m |
|
| 10 |
|
hlcgrex.1 |
|
| 11 |
|
hlcgrex.2 |
|
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
hlcgrex |
|
| 13 |
4
|
ad3antrrr |
|
| 14 |
5
|
ad3antrrr |
|
| 15 |
6
|
ad3antrrr |
|
| 16 |
7
|
ad3antrrr |
|
| 17 |
8
|
ad3antrrr |
|
| 18 |
10
|
ad3antrrr |
|
| 19 |
11
|
ad3antrrr |
|
| 20 |
|
simpllr |
|
| 21 |
|
simplr |
|
| 22 |
|
simprll |
|
| 23 |
|
simprrl |
|
| 24 |
|
simprlr |
|
| 25 |
|
simprrr |
|
| 26 |
1 2 3 13 14 15 16 17 9 18 19 20 21 22 23 24 25
|
hlcgreulem |
|
| 27 |
26
|
ex |
|
| 28 |
27
|
ralrimiva |
|
| 29 |
28
|
ralrimiva |
|
| 30 |
|
breq1 |
|
| 31 |
|
oveq2 |
|
| 32 |
31
|
eqeq1d |
|
| 33 |
30 32
|
anbi12d |
|
| 34 |
33
|
reu4 |
|
| 35 |
12 29 34
|
sylanbrc |
|