Step |
Hyp |
Ref |
Expression |
1 |
|
iccmbl |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |
2 |
|
mblvol |
|- ( ( A [,] B ) e. dom vol -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
3 |
1 2
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) |
4 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
5 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
6 |
|
icc0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
7 |
4 5 6
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A [,] B ) = (/) <-> B < A ) ) |
8 |
7
|
biimpar |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( A [,] B ) = (/) ) |
9 |
|
fveq2 |
|- ( ( A [,] B ) = (/) -> ( vol* ` ( A [,] B ) ) = ( vol* ` (/) ) ) |
10 |
|
ovol0 |
|- ( vol* ` (/) ) = 0 |
11 |
9 10
|
eqtrdi |
|- ( ( A [,] B ) = (/) -> ( vol* ` ( A [,] B ) ) = 0 ) |
12 |
|
0re |
|- 0 e. RR |
13 |
11 12
|
eqeltrdi |
|- ( ( A [,] B ) = (/) -> ( vol* ` ( A [,] B ) ) e. RR ) |
14 |
8 13
|
syl |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
15 |
|
ovolicc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
16 |
15
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) |
17 |
|
resubcl |
|- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
18 |
17
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
19 |
18
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B - A ) e. RR ) |
20 |
16 19
|
eqeltrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
21 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
22 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
23 |
14 20 21 22
|
ltlecasei |
|- ( ( A e. RR /\ B e. RR ) -> ( vol* ` ( A [,] B ) ) e. RR ) |
24 |
3 23
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) e. RR ) |