| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1oi |
|- ( _I |` ~H ) : ~H -1-1-onto-> ~H |
| 2 |
|
f1of |
|- ( ( _I |` ~H ) : ~H -1-1-onto-> ~H -> ( _I |` ~H ) : ~H --> ~H ) |
| 3 |
1 2
|
ax-mp |
|- ( _I |` ~H ) : ~H --> ~H |
| 4 |
|
id |
|- ( y e. RR+ -> y e. RR+ ) |
| 5 |
|
fvresi |
|- ( w e. ~H -> ( ( _I |` ~H ) ` w ) = w ) |
| 6 |
|
fvresi |
|- ( x e. ~H -> ( ( _I |` ~H ) ` x ) = x ) |
| 7 |
5 6
|
oveqan12rd |
|- ( ( x e. ~H /\ w e. ~H ) -> ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) = ( w -h x ) ) |
| 8 |
7
|
fveq2d |
|- ( ( x e. ~H /\ w e. ~H ) -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) = ( normh ` ( w -h x ) ) ) |
| 9 |
8
|
breq1d |
|- ( ( x e. ~H /\ w e. ~H ) -> ( ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y <-> ( normh ` ( w -h x ) ) < y ) ) |
| 10 |
9
|
biimprd |
|- ( ( x e. ~H /\ w e. ~H ) -> ( ( normh ` ( w -h x ) ) < y -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) |
| 11 |
10
|
ralrimiva |
|- ( x e. ~H -> A. w e. ~H ( ( normh ` ( w -h x ) ) < y -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) |
| 12 |
|
breq2 |
|- ( z = y -> ( ( normh ` ( w -h x ) ) < z <-> ( normh ` ( w -h x ) ) < y ) ) |
| 13 |
12
|
rspceaimv |
|- ( ( y e. RR+ /\ A. w e. ~H ( ( normh ` ( w -h x ) ) < y -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) |
| 14 |
4 11 13
|
syl2anr |
|- ( ( x e. ~H /\ y e. RR+ ) -> E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) |
| 15 |
14
|
rgen2 |
|- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) |
| 16 |
|
elcnop |
|- ( ( _I |` ~H ) e. ContOp <-> ( ( _I |` ~H ) : ~H --> ~H /\ A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( ( _I |` ~H ) ` w ) -h ( ( _I |` ~H ) ` x ) ) ) < y ) ) ) |
| 17 |
3 15 16
|
mpbir2an |
|- ( _I |` ~H ) e. ContOp |